NPS-EC-00-005

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Center for Joint Services Electronic Warfare

An All-Digital Image Synthesizer for
Countering High-Resolution Imaging Radars

by

P.E. Pace
S. Ekestorm
C. Karow
D. Fouts

February 24, 2000

Approved for public release; distribution unlimited.

Prepared for: Office of Naval Research

20000324 052

DTIC QUALITY INSPECTED 3
o

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RADM ROBERT C. CHAPLIN R. Elster
Superintendent Provost

This report was sponsored by the Office of Naval Research.

Approved for public release; distribution is unlimited.

The report was prepared by:

SIS

Phillip E. Pace
Associate Professor
Department of Electrical and

Computer Engineering
Reviewed by: Released by:
R Jw.
pe
7)
JEFFREY B~KNORR DAVID W. NETZER
Chairman Associate Provost and
Department of Electrical and Dean of Research
Computer Engineering

REPORT DOCUMENTATION PAGE S

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

mfonnauon mcludmg suggesuons for reduang thns burden to Washunglon Headquaners Serwces Dnrectorate for In(ormauon Operahons and Reports, 1215 Jefferson Davis Highway, Suite
< 88} Washington DC 20503

3. REPORT TYPE AND DATES COVERED
Technical Report

2. REPORT DATE
February 24, 2000

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An All-Digital Image Synthesizer for Countering High Resolution

Imaging Radars N0O173-00-WR 0014

6. AUTHOR(S)
P.E. Pace, S. Ekestorm, C. Karow, and D. Fouts

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Department of Electrical and Computer Engineering REPORT NUMBER
Naval Postgraduate School
Monterey, CA 93943-5000 NPS-EC-00-005

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research

Code ONR-313EW
800 North Quincy Street
Arlington, VA 22217-5660

11. SUPPLEMENTARY NOTES
The views expressed in this report are those of the author and do not reflect the official policy or
position of the Department of Defense or the United States Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.
A

13. ABSTRACT (Maximum 200 words)

A digital image synthesizer (DIS), especially useful as a counter-targeting signal repeater, (i.e, for
synthesizing the characteristic echo signature of a pre-selected target) is reported. The DIS has a
digital radio frequency memory (DRFM) and associated circuitry, including digital tapped delay lines
and a modulator in each delay line to impose both amplitude and frequency modulation in each line. A
unique property of the digital image synthesizer is its ability to synthesize false targets using wideband
chirp signals of any duration. To generate the target, the user can program the target extent (number of
taps) and the amplitude and Doppler frequency of each range-Doppler cell within the image. The
system-on-a-chip uses a scalable CMOS technology that increases the bandwidth and sensitivity of
such a repeater over prior analog based systems. The application specific integrated circuit reduces the
noise of the repeated signal, reduces the size and cost of such a system, and permits real time
alteration of operating parameters, permitting rapid and adaptive shifting among different types of
targets to be synthesized. A scan path test capability is also included to allow intra-chip signal analysis
and verification.

15. NUMBER OF PAGES
268

14. SUBJECT TERMS
digital radio frequency memory, DRFM, counter-targeting, image synthesizer,

application specific integrated circuit, ASIC, electronic warfare 16. PRICE CODE

NSN 7540-01-280-5500

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 13. SECURITY CLASSIFICATION | 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCILASSIFIED UNCLASSIFIED SAR

STANDARD FORM 298 (Rev. 2-89)
Prescribed by ANSI Std. 23918 298-102

EXECUTIVE SUMMARY

-

MoQw» N

Sowy w

Wy &

mouawy» &

moQw» W

COUNTERING THE SENSOR-SHOOTER ENGAGEMENT

INTRODUCTION TO INVERSE SYNTHETIC APERTURE RADAR

Range Doppler Imaging

Range Compression Process

Analog Range Compression Network Example
Digital Range Compression

Azimuth Compression Process

THE DIGITAL IMAGE SYNTHESIZER CONCEPT

Scattering Physics of a Target

Analog Image Synthesis

Digital Image Synthesis

Functional Description of the Digital Image Synthesizer

ARCHITECTURE VARIATIONS AND SIMULATION

Architecture Variations
Simulation Overview
Simulation Details

DIS USING FIELD PROGRAMMABLE GATE ARRAYS

Introduction

The Altera MAX+PLUS II Environment
FPGA technology and the Altera 10K50
DIS Architecture using FPGAs
Simulation Results

FPGA-TO-ASIC CONVERSION

FPGA Limitations
Altera-to-MOSIS Process Flow
Leonardo Spectrum

American Microsystems Inc.
Migration to Tanner

(= JAVeJEN N W, =

14

14
15
16
17

21

21
24
26

41

41
42

45
63

68

68
68
72
74
75

7. Application Specific Integrated Circuit Design 76
A. Introduction to Tanner Tools ‘ 76
B. Digital Image Synthesizer Architecture - 81
C. S-Edit Implementation 86
D. Chip Operation 101
E. Timing Control 104
F. Scan Path Testing 106
G. Simulation in T-Spice 110
References 121
Table of Abbreviation 123

Appendix A - MATLAB Codes

Appendix B - Visual Basic Codes

Appendix C - Schematics and Symbols of Modified Architecture
Appendix D - T-Spice Simulation Files and Hardlimiter m-file

Appendix E - AMI

ii

\

EXECUTIVE SUMMARY

A digital image synthesizer (DIS), especially useful as a counter-targeting signal repeater
(i.e., for synthesizing the characteristic echo signature of a pre-selected target) is
reported. The DIS has a digital radio frequency memory (DRFM) and associated
circuitry, including digital tapped delay lines and a modulator in each delay line to
impose both amplitude and frequency modulation in each line. A unique property of the
digital image synthesizer is its ability to synthesize false targets using wideband chirp
signals of any duration. To generate the target, the user can program the target extent
(number of taps) and the amplitude and Doppler frequency of each range-Doppler cell
within the image. The system-on-a-chip uses a scalable CMOS technology that increases
the bandwidth and sensitivity of such a repeater over prior analog based systems. The
application specific integrated circuit reduces the noise of the repeated signal, reduces the
size and cost of such a system and permits real time alteration of operating parameters,
permitting rapid and adaptive shifting among different types of targets to be synthesized.
A scan path test capability is also included to allow intra-chip signal analysis and

verification.

1. COUNTERING THE SENSOR-SHOOTER
ENGAGEMENT

Future Navy electronic warfare (EW) systems must be designed to operate
in the RF environment to provide a layered EW defense and also serve as a fully
integrated shipboard combat system sensor. Next generation EW systems must also
provide threat identification and a complete situational awareness to allow the quick
reaction modes required to counter the modern anti-ship cruise missile (ASCM) threat.
Figure 1.1 shows the sequence of events taken by the enemy sensor-shooter in order to
place a missile on a target (hard kill). A typical sequence begins with the enemy’s
electronic support surveillance sensor detecting the target of interest (e.g., with a long
range over-the-horizon targeting radar). After acquiring a number of hits on the target,
the identification of the target is pursued using an additional high-resolution sensor such
as an airborne inverse synthetic aperture radar (ISAR) imager. This type of radio

frequency (RF) sensor forms an image of the target that can be used for recognition and

identification.
HARD KILL >
Weapon
. Acquisition Engage Selection Mid-Course . Terminal
Surveillance and |dentification Decision and Guidance Acquisition Homing
Launch
N _— , e v) N " . \ v A\ ~ J
Counter- Counter- Counter- Counter Counter-
Surveillance Identification Targeting Lock-on Terminal

Figure 1.1: Sequence of steps necessary to land a missile on a target.

Depending on the target identification, the decision to engage the target and
launch a weapon (such as an ASCM) is made using the inputs, for example, from the

ISAR imager. After the ASCM is launched, acquisition and terminal homing of the

missile is again accomplished using the missile’s ISAR. Use of an ISAR in the terminal
phase of the missile allows a good aimpoint accuracy and greater probability of kill.

To avoid the ASCM hard kill, a number of countering techniques can be
used including counter-surveillance, counter-identification, counter-targeting, counter-
lock-on and counter-terminal. Counter-surveillance and counter-identification include the
use of low radar cross section materials, stealth and deception devices. Counter-targeting
includes the use of active electronic attack (EA) and the use of decoy repeaters. Counter-
lock-on and counter-terminal techniques consist of EA, distraction and seduction chaff as
well as the use of decoy repeaters.

Counter-identification and counter-targeting systems can begin the
electronic attack well before the opposition launches any missiles due to the generation of
a lower probability of target acquisition. Since acquisition systems and future missile
seekers will employ pulse-to-pulse spread spectrum using unfocused SAR and ISAR to
improve target recognition and decoy rejection, the need for coherent countering of these
imaging sensors/seckers remains a high priority for EA systems. Countering-
identification and counter-targeting techniques employ a false target image generated or
synthesized with the objective of deceiving the imaging radar into believing the false
target is a real one. Imaging sensors use coherent range-Doppler processing and
consequently, various forms of complex modulations must be imposed on the intercepted
wideband waveforms in order to enable the imager to integrate the false target properly.

In this report, the design, analysis and fabrication of an all-digital image
synthesizer for pulse-to-pulse countering of high resolution RF imaging sensors (e.g.,
SAR, ISAR) is presented. The signal processing used in the digital image synthesizer
circuit is especially useful as a signal repeater i.e., for synthesizing the characteristic echo
signature of a pre-selected target. The entire system has a digital radio frequency memory
(DRFM) and associated circuitry, including a digital tapped delay line and a modulator in
each delay line to impose both amplitude and frequency modulation in each range cell.
Use of digital semiconductor technology (0.5/0.35 # m CMOS) increases the bandwidth
and sensitivity of the repeater over prior analog based systems and reduces the noise of
the repeated signal. It also reduces the size and cost of such a system and permits real-

time alteration of operating parameters, permitting rapid and adaptive shifting among

different kinds of targets to be synthesized. The integrated circuit is designed such that it
can easily be integrated with a number of phase-sampling DRFM architectures.

For completeness, Chapter 2 provides a brief introduction to ISAR and
ISAR signal processing. Chapter 3 discusses the digital image synthesizer concept and
how the false target in generated. In order to maintain a simulation of the hardware for
easy evaluation of concept alternatives, Chapter 4 describes a modular Matlab program
that is easy to use and maintain. Chapter 5 presents an Altera field programmable gate
array (FPGA) implementation of the image synthesizer concept. To increase the
bandwidth of the device, Chapter 6 describes the investigation into converting the FPGA
design into an application specific integrated circuit (ASIC). In chapter 7, the ASIC
design in scalable CMOS is described in detail including a full-simulation of a 2-tap
device. Comparison of the results with the Matlab simulation is also presented in order to

verify the concept and detail the advantages of the architecture.

2. INTRODUCTION TO INVERSE SYNTHETIC
APERTURE RADAR

ISAR is a high-resolution technique for imaging isolated moving targets
such as ships and aircraft. The technique used by both targeting sensors and ASCMs,
closely parallels the SAR imaging approach in which the image (or map) is generated
from the return signals being reflected off the target as the radar moves past the target
area. For the ISAR technique the target imaging is generated from the return signals
begin reflected off the target as the target rotates within the radar illumination. To
understand this duality Figure 1.2 shows a spotlight SAR in which the radar transverses a
circular path about the target while collecting the return signals (focused spotlight) [1].
The radar antenna in the spotlight SAR continually tracks the target. Note that the same

signal returns could be collected if the radar were stationary and the target was put

through a rotation as shown in Figure 2.1 (b).

\g% Stationary
]) Target

b) D—(—-<
¢ R

Figure 2.1: Comparison of the geometrical relationship between (a) focused spotlight SAR and
(b) ISAR (adapted from [1]). '

A. Range Doppler Imaging

The range-Doppler image consists of resolution cells each containing
estimates of the target’s magnitude and position of scatterers in both range and cross
range (Doppler). The orientation of the range-Doppler image is determined by the
target’s rotation relative to the ISAR. The range dimension within the range-Doppler
image is oriented along the radar line of sight (LOS). Range focusing is based on the
range-independent point target response determined by the wideband chirp waveform.
The cross range dimension of the range-Doppler image is the dimension lying
perpendicular to the plane contained by the radar LOS and contains the Doppler
frequency of the resolved scatterers in range. The azimuth focusing is accomplished by
determining the rotational motion during data collection and calculating the compressions
for the sharpest focus. The Doppler frequency shift produced by a range resolved
scatterer is proportional to the angular rotation rate @ and the cross range distance

between the scatterer and the center of target rotation [1].

B. Range Compression Process

High range resolution ISAR uses an analog frequency coding technique,
called chirp. A chirp pulse waveform is shown in Figure 2.2. The transmitted chirp can be

expressed as a complex narrowband signal
S, (1) = a(t)e™® = rect (;:Jej 2nlfarrf) 2.1

where £, is the carrier frequency, A is the linear frequency sweep or bandwidth of the

transmitted signal, K is the slope or chirp rate (K = A/T), T is the pulse width and the

1 for i < —1-
; T| 2
rect| — [= < 2.2)
r] 1
0 for |—>—
T| 2

Instantaneous

Frequency _i_

Signal 4
Amplitude

time —»

Figure 2.2: Chirp pulse waveform.

instantaneous frequency (time-dependent frequency) is obtained as

1 do
f(t)—E-;— f+kt. (2.3)

Within the pulse duration T, the instantaneous frequency changes from f—kT/2 to

fe+kT/2. The dispersion D or time-bandwidth product of the waveform is D = TA [1].

C. Analog Range Compression Network Example

The chirp pulse waveform can be compressed using an analog pulse

compression network as shown in Figure 2.3.

A

—> Pulse _ ATA Increase
S0 Compression |—jp
| h@) Sol®)

R

(compressed
pulse width)

B>~

Network
Delay

i :
|<— A —-PI Frequency

Figure 2.3: Chirp pulse waveform compressed using analog pulse compression network.

This common form of a pulse compression network is called a phase equalizer and
equalizes the slope of the linear frequency sweep. The transfer function of the pulse

compression network can be written as
H(f) — eﬂ"/K(f-fc)2 (2.4)

The corresponding impulse response can be expressed as

oo

W)= [H(f k"™ df (2.5)

-0

or

h(t)= \/g eizn(fg-x,z/Z) (2.6)

The complex matched filter output is obtained by convolving the chirp signal with the

impulse response as

So(t)=h(e)*s(t)=/Dj 297—(%2 grlraxrr) @7

The compressed pulse duration of the envelope at the 2/n points is T, = 1/4 (Raleigh

resolution). The corresponding range resolution is then

dr=--- (2.8)

Note the wider the bandwidth of the ISAR chirp signal transmitted, the smaller the range

bin size.

D. Digital Range Compression

If the pulse compression is performed digitally on the baseband return
samples, the possibility exists to adaptively control the matched filter transfer function.
The range resolution is determined by the ADC sampling rate. The convolution can be

carried out in the frequency domain using the advantages of the fast Fourier transform

(FFT) as

So(£)= F{s(e)*rle)=S(£)H(f) 29)

and is the time domain convolution carried out by multiplication in the frequency domain
where S(f) is the spectrum of the returns from one transmitted pulse and H(f) is the
transfer function (reference function) of the pulse compression filter which is stored as a
series of complex pairs (constant for a particular chirp waveform). The range

compression signal processing is shown in Figure 2.4.

Y7 LO

|
ADC S(n)
Down
Conversion - e 4 FFT FFT!
Quadrature h N
ADC ! Range | ‘
Bins ! c |
] omplex
fs 2A :‘_ n, _‘E_ _,>i FFT Range
; 28 Profile

o) [e

Figure 2.4: ISAR range compression signal processing.

The number of samples required for both S(r) and 4(r) to avoid a circular convolution is

T+ 2(R2 —Rl)

N2 Atc -1 (2.10)

where R, and R; are the edges of the range window to be processed and At = 1/f; is the
ADC sampling period. Zeroes must be added to the signal and to the 7/Az samples of the
'impulse response (common period of length N). Also note that N = 2% (where o is an
integer) due to the constraint on the FFT algorithm. The unambiguous range extent of the

ISAR is

, == | 2.11)
28 2f,

and depends on the bandwidth of the chirp signal. A two dimensional high resolution
spectral analysis algorithm based on 2-D linear prediction using autoregressive estimation

for ISAR has been presented in [2]. This approach is superior to the FFT method

mentioned above.

E. Azimuth Compression Process

If the target rotates at a rate of w rad/s towards the radar, a scatterer at a
cross range distance a has an instantaneous velocity «a toward the radar with a

corresponding Doppler frequency shift

2
fy= -—/1‘93 (2.12)

Considering two scatterers in the same slant range cell separated by da then

10

daf, = 2.13
fd A, ()
resulting in a cross range resolution of
da= j——df (2.14)
20 ¢ '

The Doppler resolution is related to the inverse synthetic integration (frame) time

df, =% giving a cross range resolution of (see Figure 2.5)

da=—"2—-=2 (2.15)

A cross range profile exists for each range bin. Samples that are integrated to form a
cross range profile come from the same range bin separated by a pulse repetition interval

(PRI) as shown in Figure 2.5.

The unambiguous cross range extent corresponds to the target size in the cross range. The

required PRF for unambiguous sampling a target of cross range extent A, is

PRF = g—a/){i"- (2.16)

and the number of range samples needed is

20A,T
n, = o 2.17
a 2, ()
The cross range extent is
nA ‘
=n,da =% 2.18
A, =n, 2w (2.18)

11

A summary of the ISAR compression process is shown in Figure 2.6.

Frame

Wideband Time T =n,PRI

Chirp

| i1

N I TTTIT
\ / / ndr

FFT / / vy 7
Cross
o ./l//F / Z /rj /j G

/'/////////

—> i,
/ Range —»

Figure 2.5: ISAR azimuth compression processing.

12

Range samples

- T%

]
e
' B T X

o

|
|
r ': -
I
1
I
1

I j
ADC [Down

]
]
b
v
FET -0 FFT |+ Conversion
! ADC |—{ Quadrature

% S ndr——————/

Azimuth
Compression

D,

Figure 2.6: Summary of ISAR compression processing.

13

3. THE DIGITAL IMAGE SYNTHESIZER CONCEPT

A. Scattering Physics of a Target

An object will modify any signal reflected from it according to the object’s shape,
surface material propertieé, and the object’s velocity relative to the signal. This permits an enemy
sensor to identify the nature of such objects, which, if the objects are military platforms like warships
or aircraft, is not desirable. One solution presented in Chapter 1 has been to artificially synthesize
fake characteristic echo signatures in response to receipt of an interrogating signal. Figure 3.1 shows
a ship and an aircraft, in the line of sight of an interrogating radar signal. As the signal hits the
aircraft and the ship, it is reflected from their fnajor scattering surfaces. The return signal from the
ship and the aircraft will be the superposition of the reflections from the various surfaces such as the
hull, superstructure, the aircraft wings and nose. Since these surfaces are at different places along
the line of sight to the radar, the superimposed reflections will be out of phase with one another by
the differing times of signal propagation to each reflecting surface. This tends to lengthen the return
radar pulse by an amount equal to the round trip propagation time of the radar signal between the
nearest and farthest major reflector and to make the reflection magnitude vary as dictated by the
varying radar cross sections of the reflecting surfaces. Furthermore, movement of the aircraft or ship
relative to the radar signal will Doppler shift the returned reflections. That is, any platform which
reflects the radar signal will frequency modulate the signal, such that the returned reflections permit
the radar to calculate the nature and motion of the platform.

The most common way to detect a Doppler spectrum in the return signal is to compare
the reflections from consecutive pulses. Thus, an imaging sensor, such as a search radar, SAR, or
ISAR can calculate the Doppler by comparing consecutive return pulses on a range bin by range bin
basis. The Doppler spectrum is conventionally computed using an algorithm that incorporates the

discrete Fourier transform.

14

Interrogating
Signal

Figure 3.1: A ship and an aircraft in the line of sight of an interrogating radar signal.

B. Analog Image Synthesis

Any credible counter-targeting repeater decoy must synthesize the temporal
lengthening and amplitude modulation caused by the many recessed and reflective surfaces, and
generate a realistic Doppler shift for each surface. Conventionally this has been done using analog
systems that receive an interrogating signal and pass it through a length of cable having serial taps
along its length, one tap per range bin. Each tap modulates the signal in amplitude and/or frequency
to synthesize the reflection from the reflective surfaces within that range bin. The delay time between
taps is selected to correspond to the differing times of flight of the radar pulse to the respective range
bins. Finally, the signals from the taps are summed, and the synthesized signal is retransmitted. In
this manner, the system returns what appears to be an echo from an object located within the selected
range bins having a signature indicative of the moving ship or aircraft object to being synthesized.

Unfortunately, analog systems have drawbacks that limit their usefulness as image
synthesizers. They are inherently noisy, and can hold an incoming signal only a short time for
processing before the signal deteriorates below the noise. This limits the system bandwidth, and
permits effective synthesis of only small objects. Further, analog systems are costly and very bulky,

the latter being a particular concern for military platforms, where space is extremely limited. Finally,

15

analog systems cannot readily change operating parameters such as relative delays among taps, or
the amount of modulation in the various taps. This means that analog image synthesizers cannot

switch among different simulated objects on the fly, but rather must typically be fabricated for one

specific type of target.
C. Digital Image Synthesis

The main advantage of the all-digital image synthesizer repeater is the increase in bandwidth
provided to the tappéd delay line processors of the kind above described. In addition, the capability
to hold the received signals as long as necessary for a given application is provided. Due to the all-
digital architecture, modulation of the target extent (number of range bins) and Doppler frequency
of each resolution cell is also a capability. This results in a small, low-cost and flexible counter-

targeting repeater decoy processor.

The digital image synthesizer uses a DRFM, and an associated digital processing
circuit having a plurality of tapped delay lines, a summer in order to sum the output of the delay
lines, and range bin signal modulator in each of the delay lines. A DRFM is a semiconductor device
that can rapidly and permanently record radio frequency information as digitized samples of the
incoming signal, and read it back equally rapidly when needed. Because the DRFM can hold data
indefinitely, the duration of the synthesized signal is not limited, as with analog systems, thus
permitting (as in the example of Figure 3.1) simulation of larger objects by adding more taps to
accommodate more range bins. Because the associated circuitry is digital, and most especially
because the ciréuitry can be dedicated to its processing task (rather than requiring extensive
programming to perform its tasks), the speed of the synthesizer can be especially great.

In an optimum hardware configuration, the associated digital image synthesizer
circuitry is made part of the DRFM on the same monolithic chip in order to increase the synthesizer
speed even more. This is in contrast to a computer, or programmable processor, which, in

conjunction with a fast and permanent memory like a DRFM, could in principle do the necessary

processing. But the time needed to execute the large number of programming instructions necessary
to process data makes this far less desirable than the current design described in this report, and, for
16

the specific problem of counter-targeting decoy repeaters, largely ineffective.
D. Functional Description of the Digital Image Synthesizer

Figure 3.2 shows a block diagram of the digital image synthesizer [3]. The antenna
receives the radar pulse from a (possibly hostile) search radar. After down conversion (not shown),
a set of comparators digitizes the phase of the analog signal producing a stream of digital samples
which are stored in the DRFM. The phase samples are a digital representation of the phase only.
Phase sampling DRFMs have fewer number of comparators and permit coherent reconstruction of
the original signal using stored amplitude information [4]. The digitized samples are read serially
from the DRFM via the tapped delay line. The circuit of Figure 3.2 shows two taps, but this is
illustrative and in principle the device contains the largest number of taps that the particular
application dictates (the number of major reflective surfaces of the synthesized target).

The digital phase samples from the DRFM are sequentially read into the taps by
clocking. The signals in the respective taps are delayed with respect to one another by pre-selected
- amounts dictated by the delays. For simplicity, the following discussion references the first tap leg
only. However, the function of each leg is identical. The phase signals in the tap, pass through a
phase accumulator and an associated look-up-table (contains sine and cosine values for a 27 cycle
used in constructing the I & Q components). Although the tap process could readily calculate cos (¢,)
and sin (¢,), doing so is less computationally efficient than use of look-up-table, and thus would
reduce overall system speed. At the output of the look-up-table, a selectable gain multiplies the

signal by a pre-selected amount. Together, these blocks constitute a range bin signal modulator.

17

The accumulator frequency modulates the signal traversing the tap leg by phase
rotation (serrodyne modulation). The phase ¢ of any signal subjected to a linear frequency

modulation such as Doppler shift is given by ¢ = (w+awy)t, where wis signal angular frequency, @y
is the change in frequency due to the modulation, and # is time. Thus at each point in time the
difference in phase between the modulated and unmodulated signal is @yt. For a digitally sampled
signal, the phase of the nth sample @, = n(@w+a;)PRI, where n is an integer counter and PRI is the
period at which the signal is sampled. The phase difference due to the Doppler frequency is nwyPRI.
Thus one can shift the frequency of a digitally sampled signal by an amount «, by rotating each nth
phase sample by nw,PRI. That is, the frequency of a digitally sampled signal can be shifted by

incrementing the phase nawPRI of each nth sample by na,PRI.
In summary, the Doppler of a target is typically inferred by sampling target-echoes

(within a single range bin) at the pulse repetition rate and inspecting these samples for Doppler

RN z
vV Y

Up <« w ¥ Down

Conversion 4

Data (signal-phase) > Delay I[Delay

Conversion -
w, PRI pi acc | |, PRI ace
= T %]
4 H Phase i Phase
ha. : Magnitude : Magnitude
se
s ling Decoder : LUT : LuT

t]
1 I.Q f
[} '
[} I
1]

! ————
Phase Gain /' Phase Gain
DRFM . Latches
gphase) @ N T feemmncccap) [ecmcccceee
Data (gain & phase) Gain (A) Gain (A)

DAC /‘

Synthesized Target image 1,Q Summer

Controller

Figure 3.2: Block diagram of the digital image synthesizer (DIS) (adapted from [3]).

18

induced phase differences between the echoes. One can simulate a Doppler shift of @, by repeating
the pulses from a sensor, with each pulse phase shifted with respect to the next by an amount w,PRI,
where PRI is the pulse repetition interval. A unique property of the DIS is its ability to synthesize
false targets using chirp signals of any duration. The number of tap stages is equal to the target
range-extent desired for synthesis.

In operation, the phase accumulator sets nominal values of @y and @;’ per instructions
from the DRFM controller. A sensor sends a burst of N pulses having a pulse repetition period of
PRI. The phase samples from the first pulse (stored in the DRFM) are piped to the first tap leg and
the accumulator rotates the phase of each sample by an amount w,PRI. The resultant phase samples
are converted to I and Q components and scaled by a gain factor A;. In the absence of output from
the second tap leg shown, the complex signal is returned to the DRFM, and thereafter to the digital-
to-analog converter that reconstructs the analog pulse for up conversion and retransmission.

The waveform of the retransmitted pulse is identical to that of the received pulse,
except that it is phase rotated by wzPRI. After processing this pulse, the DRFM changes the phase
of the first tap accumulator to 2w.PRI, rotates each phase sample of the second pulse by 2w,PRI,
and, again assuming no output from the second tap, retransmits the reconstructed pulse. This
continues through the N pulses of the burst, with the phase samples of each pulse rotated by an
amount nw;PRI, where n is pulse number, i.e., n = 1, 2, ..., N. In the absence of output from the
second tap, the result is a stream of analog pulses from the antenna that are different in phase from
one pulse to the next by W PRI. A sensor detecting these echoes would interpret the constant pulse-
to-pulse phase shift of w;PRI as a Doppler shift from a single reflector. The second tap leg does the
same thing, by use of a different w, The summer then combines the output of the first and second
tap legs. The complex signal that the summer returns to the DRFM is the superposition of the signals
exiting the first and second tap legs. This means that for each n™ pulse of the N pulses, the summer’s
- output will be the superposition of two copies of the n™ pulse, delayed with respect to one another
by the tap delay, scaled differently by the gains A;, with one phase rotated by n®w;PRI, the other by
nw'4PRI. A sensor which receives the corresponding N analog pulses will interpret this as having

come from two reflectors located in range bins separated by the delay with reflective cross sections

19

respectively proportional to the two gains. Because the pulse to pulse phase difference between these
pulses is wzPRI for the range bin corresponding to the first delay and w’,PRI for the bin
corresponding to the second delay, the sensor will interpret that the reflectors in these two range bins
have Doppler frequencies of o, and 'y, respectively.

The decoder and latch shown in Figure 3.2 updates the phase rotation and gain
coefficients for the tap legs. The controller is a process computer interfaced with the DRFM that
permits an operator to change these parameters on the fly in real time. In addition to the phase and
gain coefficients, the number of taps utilized (target extent) can be changed. Alternatively, the
controller can do this automatically. This is particularly important if ®, in any tap leg varies with
time. In the example of Figure 3.1, the aircraft flies directly at the sensor at a constant speed Doppler
shifts the signal by a constant; positive, amount. The ship, on the other hand, could be rocking back
and forth in the water along the line of sight and thus the Doppler shift corresponding to this motion

would oscillate in time.

20

4. ARCHITECTURE VARIATIONS AND SIMULATION

A. Architecture Variations

Two different implementations of the DIS architecture have been studied. The
major difference between the two implementations is the placement of the time-delay processor.
Advantages and disadvantages of the two approaches are addressed in this Chapter and are
mainly the result of the hardware technologies used. The two different implementations are
referred to as the “original architecture” and the “modified architecture”.

The “original architecture” described in Chapter 3, is illustrated in the block
diagram shown in Figure 4.1. The intercepted chirp signal within the DRFM operating bandwidth
is down converted into its /,Q components with a corresponding intermediate frequency that lies
within the instantaneous bandwidth of the phase sampling DRFM comparator technology. The
phase éampling DRFM digitizes the phase of the 1,0 components with the sampling period (time
between phase samples) corresponding to the range resolution of the DRFM. The DRFM phase
data is fed serially into the tapped delay processor with each delay corresponding to the range
resolution of the image synthesizer. The phase data at each tap is processed in a pipelined range
bin signal processor in order to generate the selected scattering mechanism. As previously

discussed, this is done by continuously rotating the phase nA¢@ = nw, PRI , translating the phase

into a complex signal I1,Q that is amplitude modulated using A;. When the complex I,Q data exits
each tap it is summed with available data from all the other tap processors each clock cycle. The
digital sum at each clock cycle is then converted to an analog signal for up conversion onto the
carrier for retransmission.

In order to show the equivalence of both architecture variations, the details of the
original architecture for the in-phase processing is shown in Figure 4.2 where E is the image

extent, A¢ is the phase increment value for the i ta rocessor, and A; is the amplitude
p p p p

modulation. The input phase is ¢(n) and the output is

I(n)= ZE:A,. cos(g(n—i)+Ag,) @)

i=0

21

v

Sy

13

Down Up
Conversion al LO > Conversion
_________________________________ A
I Q v Original ; t
' Architecture !
1
| ¢(n) ¢(n-1)
, Phase I 0
Phase : 7T TR E
Sampling ! '
: : ! | DAC| | DAC
| |
1 [}
i
A Range Bin Range Bin i
Computer T’,’ Signal Signal H
Image L Processing Processing "
E 1
Control ”. E
1]
V1| o AN ' I (n)
i \-’@ N : Qn)
!
; > —
!
Figure 4.1: Block diagram of the original DIS architecture
o(n) ¢(n-I) ¢ (n-E)
‘ _’_’ T F—@———— osee—Pp 7
A6 —P 46, —P a¢e —P
cos () cos () cos ()

Ag
—>P— I

Figure 4.2: Original DIS architecture for in phase processing.

22

The “modified architecture” was developed while investigating a move from field
programmable gate array (FPGA) technology (Altera’s Max+Plus IT) to an application specific
integrated circuit (ASIC). A block diagram of the modified architecture is illustrated in Figure
4.3.

\%4 \V4

Down Up
Conversion < Lo q Conversion
A
1 Modified !
Phase | $(n) Architecture < |
Phase T 1
Sampling E ¢ ‘ 0 I
1]
! :
1
A Range Bin Range Bin ; DAC| | DAC
Computer ——> Signal Signal H
Image | A4¢; p Processing Processing !
E | '
Control ': :
1 I
R & B E
! !
! !
! g /] '
— v —Dr
! 1
A @ e |
L et "

Figure 4.3: Block diagram of the modified DIS architecture.

The modified algorithm enables loading all tap processors synchronously with the DRFM phase
data. The DRFM phase data is processed in parallel in all tap processors in a pipelined fashion.
The results from the taps are then added together by partial sums (serial summation) from one tap
to another. The major difference between the original architecture and the modified architecture
is that the time delay processor is embedded within the summation at the output. For both of the

approaches described above it is essential that the individual taps be sequentially enabled during

23

the start-up or initial strobing of the phase data from DRFM into the tapped delay line. The taps
must also be sequentially disabled during shutdown as the phase data leaves the DIS. This avoids
the problem of erroneous data from entering into the summation during start-up and shutdown.
More details concerning the change of technology is addressed in Chapter 7. The details for the

modified DIS are shown in Figure 4.4

o) —¢

—y-
A0y —3P A9, —GP a6 —P

cos() cos () cos ()
I I I
AN—? AI—@ Ao—C)P
see T @ T ——@— Iy (n)

Figure 4.4: Modified DIS architecture for in phase processing.
1, ()= A, cos(¢(n)+ A,)+ D'[A, cos(p(n)+A¢,)]+ + D" [A, cos(p(n)+ g,)]4.3)

where D is a delay operator. Rewriting

1, (n) = A, cos(@(n)+ Ag,)+ A, cos(p(n —1)+ A,) +---+ A, cos(p(n— N)+ Agy) (4.4)
or

1, ()= 3} A, cos((n—1)+ A9,) @4
i=0

which is exactly (4.1).

B. Simulation Overview

To evaluate the performance of the architecture and to compare the results of the
hardware implementation, a MATLAB simulation was constructed of both the DIS and an ISAR

as shown in Figure 4.5. Some of the essential features of an ISAR are simulated including the

24

wideband chirp pulse waveform that is intercepted by the DIS. The DRFM/DIS is also simulated.
The complex outputs from the DRFM/DIS are presented to the ISAR signal processing for image
generation. MATLAB has also been used in several intermediate steps to be able to compare

simulation results with actual and simulated hardware design results.

Wideband chirp
ISAR / Signal
Processing ¢
DRFM

Synthesized DIS
image with

false target

Wideband chirp with

coherent modulation
Figure 4.5: ISAR-DIS simulation configuration.

MATLARB is a product from the MathWorks, Inc. and it is an integrated technical
computing environment that combines numeric computation, advanced graphics and

visualization, and a high-level programming language [5].

MATLAB includes several useful functions for:
— Data analysis and visualization

— Numeric and symbolic computation

— Engineering and scientific graphics

~ Modeling, simulation, and prototyping

— Programming, application development, and graphical user interface (GUI) design

MATLAB can be used in a variety of application areas including signal and image
processing, control system design, financial engineering, and medical research. It features a
family of application-specific toolboxes, containing comprehensive collections of functions for

solving particular classes of problems in areas such as signal processing, image processing,

25

control system design, neural networks, and more. The current version of MATLAB used in this
project is V.5.3.

In FY98, Siew-Yam Yeo developed the original set of codes during his thesis work
at the Naval Postgraduate School [6]. This set of codes has been modified to better serve the
purpose of further development in the project. For example, the “original” code has been
modified to deal with more then three taped delay lines. This set of codes all end with a “...vi.m”
extension. Parallel to the development of the ASIC hardware design (modified DIS architecture),
simulations were developed to emulate the new design. The new codes are used to verify that the

new modified architecture is giving the correct results. This set of codes all end with a “...v2.m”

extension.

C. Simulation Details

Using numerous comments, the different steps of the simulation are easily identified
within the set of simulation codes (m-files). A description of the steps, together with some
intermediate results are given below in order to visualize the development process. The flowchart
shown in Figure 4.6 together with Table 4.1 summarize the different MATLAB files used during

the simulation. Important text files used in the intermediate steps are also listed.

steps m-files plots txt-files
—| runDISvX.m |
User Inputs -~ guivXm |~
L » | sigparl.dat l
v
Radar Input _.l mathostvX.m l——-—-——» paratxt |
Parameters L [rawintoe]
Create Transmitted \—>
Radar Chirp Pulse
Generate DRFM '
Phase Data l ;

—————m—— | checkvX.txt

DIS Algorithm "[SimhwchkvX.ml
g —0
imagei.txt

ISAR > lth Xm ‘; om hardware
Pulse Compression L plothwX. I [imageq.txt |

* T Compare > — R

Figure 4.6: MATLAB simulation flowchart.

26

m-files txt-files Remarks
runDISvX.m — To execute the simulation
guivX.m — To get user inputs of the false target to be generated

sigparl.dat — Signal parameters of the false target to be generated

mathostvX.m — Simulates the ISAR transmitted pulse
— _Simulates the DRFM at the DIS location

.| para.txt . ~ Number of range bins of the ISAR

— Number radar pulses to be processed (integrated)
— Target extent

— Amplitude settings for each cell

— Phase values representing an increasing/decreasing

Doppler shift
rawint.txt — DRFM phase data samples
simhwchkvX.m — Simulates the DIS algorithm
cosine.txt — Cosine look-up table, 32 values for one period
sine.txt — Sine look-up table, 32 values for one period
dec2two.m — MATLAB function that converts decimal number to
2-complement binary representation
two2dec.m — MATLAB function that converts 2-complement binary
representation to decimal number
checkvX.txt — Intermediate results through the DIS algorithm
imagei.txt — Hardware/hardware simulation results (I-channel)
imageq.txt - |- Hardware/hardware simulation results (Q-channel)
plothwvX.m — Pulse compresses the radar return of the false target

generated by the DIS hardware
— Plots the final results for comparison

Table 4.1: Files used during the MATLAB Simulation

The m-files mentioned in the table above together with the cosine.txt and the sine.txt files are

attached in Appendix A.

User input: To run the simulation the user executes the runDISvI.m or the runDISv2.m file
depending whether the original or the modified architecture is desired (afterwards the files are
referred to as “...vX.m”). The runDISvX program is a script file to execute other script files in a
pre-defined order. The user is presented with a graphical user interface (GUI) of a Range/Doppler
map — the Range-Doppler-Amplitude Map Entry Program guivX.m is shown in Figure 4.7

(runDISvX.m executes guivX.m).

27

.0 61 2044 1660 & TS RO NN BRAGIR

Figure 4.7: The range-Doppler-amplitude map entry program.

In this example the user has specified the following data to generate the false target using the DIS

shown in Table 4.2.
Target Cell | Range Cell | Doppler Cell | Amplitude | Doppler Shift Remark
1 1 20 2 0 Tap 0 — 1* Tap
2 2 20 2 1 Tap 1 — 2" Tap
3 3 20 2 2 Tap 2 — 3" Tap

Table 4.2: User Specified Inputs of the False Target

The values, called signal parameters of the false target, are written to an intermediate file that is

called sigparl.dat. Examining the sigparl.dat file for this case will give the values shown in

28

Table 4.3. The file only holds the numerical values. The header of the table has been applied later

to explain what the different values relate to.

Range Cell Doppler Cell Amplitude Doppler Shift
1.0000000e+000 2.0000000e+001 2.0000000e+000 0.0000000e+000
2.0000000e+000 2.0000000e+001 2.0000000e+000 1.0000000e+000
3.0000000e+000 2.0000000e+001 2.0000000e+000 2.0000000e+000

Table 4.3: Contents of the file sigpar?.dat.

Defining the Radar Parameters: The next file to be executed by the runDISvX.m file is
mathostvX.m. The mathostvX.m file represents both the ISAR while generating the transmitted
chirp pulse and the DRFM on the platform where the DIS is located. The radar specific

parameters of the ISAR are coded into this program. In this case the radar parameters used is

shown in Table 4.4.
ISAR Theoretical Parameter Value MATLAB Equivalent Variable
- Uncompressed pulse width, 7 500 ns pw
— Compressed pulse width, 7, 8 ns pwe = 1/(1.25 x bw)
— Pulse repetition frequency, PRF 2kHz prf
- Pulse repetition interval, PRI 500 ps pri
- Bandwidth of the chirp pulse, BW 125MHz |bw = 100 MHz
- Pulse compression rate, K 25x 10" [y = 27bw/pw) = 1.256 x 10"
— Sampling frequency, f; 125MHz |fs=1.25xbw = 125 MHz
— Sampling time step, ¢, 8ns Ts=1ffs =8ns

Table 4.4: Defined Radar Parameters (file mathostvX.m).

Creation of the Intercepted Radar Signal: The signal parameters specified by using the GUI

used to create the baseband complex signal represented by
_ 1\ j2a(f,privkrf)
S, (z) = rect - e (4.5)

29

T

where f; is the Doppler frequency of the DIS platform intercepting the chirp signal. Note that this
expression is similar to (2.1) where the parameter K is the chirp slope rate and T is the
pulsewidth. The Doppler frequency fz has to be taken into consideration when building the
received chirp waveform in the DiS simulation. An approximation is used that assumes a constant
phase change due to Doppler within a chirp pulse. This assumption is valid since the Doppler
shift is only tens of hertz compared to the MHz chirp bandwidth. The wideband intercepted signal
is then phase sampled and the phase is quantized into 5-bits or 32 different values, representing a
-phase between 0 and 27 radians. The values used are O to 31 as a decimal representation of a 5-bit
binary word (25 = 32). The DRFM phase data is written t0 a text file (rawint.txt) that is read by
simhwchkvX.m. An example of the DRFM phase data matrix contained in the rawint.txt file is
shown in Table 4.5. The file only holds the numerical values. The rows of the matrix represent
radar pulses. The columns represent DRFM phase data samples from a specific radar pulse at

specific sampling times. The variable names used in MATLAB are also shown.

DRFM Phase Data
Radar Pulse (intraPulseCnt)
(batchCnt) 1l 2| 3 4 s 6 7 8 9100 . . - 62
1 o ol of o o o 5 s 1015 . J . 10
2 15| 15/ 15| 15| 15| 15 15[20| 20{ 25| . .| - 25
3 25| 25 25| 25| 25| 25/ 31| 31 4 9 4 .4 - 4
4 10l 10/ 10| 10/ 10| 10| 10{ 15| 15/ 20 . .| . 20
64 25| 250 25| 31| 31| 31} 31] 4| 4 O 9

Table 4.5: Contents of the file rawint.txt.

The impulse response waveform used in the ISAR range compression algorithm is
also computed when executing this file. The amplitude and Doppler frequency shift values for

each range Doppler cell are also obtained from the GUI and represent the gain and phase rotation

values required for the DIS.

A number of different values are written to another text file (para.txt). The values
are used for simulating the DIS both in MATLAB and in the hardware design. The file only holds
the numerical values. These values represent the following information (also exemplified in Table
4.6). '

— number of range bins of the ISAR

— number radar pulses the ISAR is using for processing (integrating) received radar return
signals |

— target extent (number of target cells/taps used)

— amplitude settings for each cell translated into a gain value of 1, 2,4 or 8

— set of phase values representing an increasing/decreasing Dbppler shift due to the motion of

the target cell relative to the ISAR

Value | Variable Comment

62 | nRangeCell Number of Range Cells (Range Bins of the ISAR)
64 | nDopplerCell Number of Doppler Cells (Doppler Bins of the ISAR)

3 targetExtent Target Extent

2 gain(1) Gain modulation coefficient, target cell 1

2 | gain(2) Gain modulation coefficient, target cell 2

2 gain(3) Gain modulation coefficient, target cell 3

0 | phi(1,batchCnt) | Doppler modulation coefficient, target cell 1, 1% radar pulse

0 | phi(2,batchCnt) | Doppler modulation coefficient, target cell 2, 1* radar pulse

0 | phi(3,batchCnt) | Doppler modulation coefficient, target cell 3, 1* radar pulse

0 . Doppler modulation coefficient, target cell 1, 2" radar pulse

1 Doppler modulation coefficient, target cell 2, 2™ radar pulse

1 Doppler modulation coefficient, target cell 3, 2" radar pulse

0 Doppler modulation coefficient, target cell 1, 3™ radar pulse

1 Doppler modulation coefficient, target cell 2, 3™ radar pulse

2 Doppler modulation coefficient, target cell 3, 3™ radar pulse

0 | phi(1,batchCnt) | Doppler modulation coefficient for target cell 1, 64™ radar pulse
31 | phi(2,batchCnt) | Doppler modulation coefficient for target cell 2, 64" radar pulse
63 | phi(3,batchCnt) | Doppler modulation coefficient for target cell 3, 64™ radar pulse

Table 4.6: Contents of the file para.txt.

31

To visualize the effect of the amplitude and the Doppler frequency shift values
shown in Figure 4.7, the range-Doppler image from the ISAR signal-processing simulation is

plotted in Figure 4.8.

S

Figure 4.8: ISAR range-Doppler image with (a) no amplitude or Doppler frequency shift and (b) amplitude
and Doppler frequency shift as shown in Table 4.2.

Figura 4.8 (a) represents the ISAR range-Doppler image but contains no amplitude or Doppler
frequency shift. Figure 4.8 (b) shows the ISAR range-Doppler image with amplitude and Doppler

frequency shift as shown in Table 4.2.

Simulation of the DIS (Original and Modified Architecture): To simulate the DIS algorithm
the runDISvX program executes the simhwchkvX.m file, which starts by reading in the values
from para.txt. The number of Doppler cells within the range-Doppler map is used as an index for

an outer for-loop in the program for processing phase data from one radar pulse to the next. The

32

number of range bins within the range-Doppler map is used as an index for an inner (nested) for-
loop and represents the number of clock pulses it takes to process the DRFM phase data from one
radar pulse to the next. The target extent represents the number of taps in the tap delay line. A
target cell is also referred to as a tap in the DIS algorithm. The number of target cells specified in
the GUI is therefore equivalent to the number of taps used to create a false target. The gain value
selected for each tap along with the corresponding Doppler frequency shift are recorded and
relate to the synthesized motion of each target cell.

Next the DRFM phase data from the rawint.txt file is read. The program also loads
data from cosine.txt and sine.txt. These files hold data used as the look-up table (LUT) and
contain one period of a cosine waveform and a sine waveform (32 values) as shown in Figure 4.9.
Recall that the LUT translates the input phase (from the phase accumulator) into a complex
signal. Using the for-loops the DIS algorithm modulates the phase data to compute the signal that
represents the return signal corresponding to the desired false target. The original and the
modified architecture calculate the modulation and perform the computation in different ways as

described earlier.

cosine.txt sine.txt

L I e e e e e P Y D] M
I | I i
0.8f ~ Nt — — — Uy A Uy g, S S oY -] SR - N S,
I | ! | I 1
08/ — — —hy — —— Dttt i Sl 08f — —ft-——— e e il
! 1) 1 1 o !
04 — — =X ~ - Rt e g ol 04f ~gf ~lw = — ~ Lauiais Ll it
1 i i | i]
02f - = ~t- - % .L__—_:____T____ ----- 02 - —- - — - il
1 1§
oF—-—-—-l—-—-— J_____I___-J...._.._I —————— o — — —l— — - =~ U S Y
1 1 | | ! !
02 - ——l- - - - g A il 02 — = —l-w - el i
I | 1 i b
WA - = e e o J..___.I_-——.l— R T 04 — — e = = — S S VU [P N UG U NN
] ! | 1 ' I
B I S N B S E A i e [i N
V.| PR v R g e G P N PR S
1 | NN} @1 ! ! 08 ! |)
| St el ieluule itiintatr dalabubet uialelubr fuh Moo Pl A
1 1 1 1 L 1
5 10 15 20 25 % 5 10 15 20 25 30

Figure 4.9: Cosine and sine look-up table (LUT).

In the original DIS architecture the DRFM phase data propagates serially from tap
to tap during one clock pulse time delay. The phase data at each tap is then modulated and the
results from all taps are summed together to form the output. In the modified DIS architecture,
the DRFM phase data is presented to all the taps synchronously. The phase data in this case, is

processed in parallel in all taps. The delay is implemented during summation of the results from

33

each tap. The individual taps are enabled during the start-up and disabled during shut-down
according to the reasons described earlier.

In the MATLAB simulation several sets of DRFM phase data representing samples
from a number of radar pulses are processed directly one after another. In an actual

implementation the set of DRFM phase data will of course be separated in time by one PRI

Range and Azimuth Compression: At the receiver side of the ISAR, as part of the signal
processing, the radar return signals containing the generated false target are compressed both in
range and azimuth. First range compression is done. Range compression is based on correlating
the received signal with a pre-stored reference waveform and neglecting the complex amplitude

(see (2.6) and Figure 2.4)

h(n) = "™ (4.6)

The FFT is performed on the received signal. The resulting spectrum is multiplied by the .
complex conjugate of the FFT of the reference waveform (4.6) created in the mathostvX.m file.
An inverse FFT (IFFT) is then performed to obtain the range bin profiles for each PRI

For the azimuth compression for a single range bin the complex range samples are
taken from 2" pulses and integrated into an FFT. The magnitude of the FFT output is the Doppler

profile for that particular range bin.

34

The received signal after compression can be visualized as a contour plot as shown
in Figure 4.10 and is referred to in the second sub-plot below as the MATLAB Simulation plot
(Amplitude and Doppler Modulated Range-Doppler Map).

[I QU

Figure 4.10: ISAR range-Doppler images showing (a) the unmodulated DIS output and (b) the modulated
DIS output (MATLAB Simulation).

Plot and Compare Results: The last file to be executed by the runDISvX program is the
plothwvX.m. This file obtains the I- and Q-values of the hardware simulation from the imagei.txt
and the imageq.txt file (written by Altera/Visual Basic FPGA hardware program). Range and
azimuth pulse compression is performed using the same procedure as described for the MATLAB
simulation results. The results are plotted for comparison. The DIS simulation results are shown

in the first sub-plot of Figure 4.11. In the second sub-plot the hardware or hardware simulation

35

result are shown when data is available. A full comparison is shown in the following Chapters

when the different hardware implementation techniques are described.

PR U P g
] [}
1 [}

e A N

[}

[} 1

1
1

UGN 'S DU [Y G S -
1

]
Tttt T =-"r=-
L}

Figure 4.11: MATLAB DIS simulation versus hardware results.

36

To better visualize the image created by the DIS (the generated false target seen by
the ISAR), MATLAB uses the same data as before to construct a 3-D mesh surface plot, as
shown in Figure 4.12. The first sub-plot shows the result from the MATLAB DIS simulation. The
second subplot shows the hardware (or hardware simulation) result. Finally, the third sub-plot

shows the difference between the MATLAB simulation and the hardware results.

s Difference
[(MATLAB Simulation Result - Hardware Result)

Cross Range Celis "
o .

- ! i " i
04 . 05 0§07 08 . O
- . ‘Down Range Cells - " . 1

Figure 4.12: MATLAB simulation result versus hardware result, and the difference.

37

To better study the results from the DIS simulation, the ISAR image of the false target is
exposed, as shown in Figure 4.13. The user defined target cells, after DIS modulation and ISAR

signal processing (range and azimuth compression) stand out clearly from the background in the

plot.

s
f

Figure 4.13: MATLAB simulation result (3-D mesh surface plot).

38

Original and Modified DIS Comparison: To ensure that both the original and modified

algorithms produce the same result, a series of comparisons for different test cases were

conducted. The example below shows the ISAR output when using the different algorithms. It

also shows the ability to modulate the extent of the false target using a large number of taps. In

the test case below 32 taps are used. Figure 4.14 shows the input target entry. Table 4.7 shows the

amplitude and Doppler offset values selected for the 32 range bin false target to be synthesized.

H

W Naval ostGlduate School

R A TR B ks

Doppler shift

e bt ey 40

Figure 4.14: The range-Doppler-amplitude map entry program.

12 | 34 | 56 | 78 | 910 | 1112 | 13-14 | 15-16 | 17-18 | 19-20 | 21-22 | 23-24 | 25-26 | 27-28 | 29-30 | 31-32
Amp | 2 2 2 3 3 4 4 3 2 2 1 1 1 1 2 2
Dp -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Table 4.7: Amplitude and Doppler Offsets Selected for 32 Range Bin False Target

As observed in Figures 4.15 and 4.16, the two different algorithms perform the same result.

39

“

Cross Rangs Cells " Down Range Cas

Figure 4.16: Original versus modified algorithm DIS simulation results, and the difference.

40

5. DIS USING FIELD PROGRAMMABLE GATE ARRAYS

A. Introduction

This chapter discusses the hardware implementation of the DIS by using FPGA
technology. The hardware design is captured using the Altera Multiple Array Matrix
Programmable Logic User System or MAX+PLUS 1II software version 9.21 (the project was
started in 1998 using version 8.3). MAX+PLUS 1II is the design environment for Altera
programmable logic devices (PLD). A brief description of the MAX+PLUS II software is given
below followed by a short introduction to Field Programmable Logic Devices (FPLDs) [7]. In
particular, FPGAs, specifically the Altera 10K50 family are described. Later sections of this
chapter describe each of the modules of the DIS hardware design, starting from the top-level-
hierarchy and progressing down. The final section addresses the FPGA results and the

comparison to MATLAB simulations.

m MAX+PLUS Nl Block Diagram

Design Entry Project Processing
MAX+PLUS If MAX+PLUS 1| MAX+PLUS 1l Compiler
TextEditor GraphicEditar - -
Compiler Netlist Dateb Logi
Extractor (ind. al alabase ogie
MAX+PLUS I MAX+PLUS I netiit readers) Bulder | | Syrihesizer
‘Waveform Editor Symbol E ditor
| Design Doctar | | Partitioner | | Fiter |
MAX+PLUS i
Floorplan Editor Timing, Functional, | |EDIF/Verilog/
—L or Linked VHDL Nelist | | Assembler
/ SNF Extractor Whiters
MAX+PLUS I e
Mess
. S— Proce::%?&] _
Project Verification \ Hierarchy Device Programming
Display
MAX+PLUS |l MaxX+PLUS Il MAX+PLUS I
Simulatar Waveform Editor Programmer

MAX+PLUS I
Timing Analpzer

Figure 5.1: Altera MAX+PLUS Il environment from [8].

41

B. The Altera MAX+PLUS II Environment

The MAX+PLUS II software provides a multi-platform, architecture-independent
design environment that easily adapts to specific design needs. The MAX+PLUS II development
software is a fully integrated programmable logic design environment. This tool supports all
Altera programmable device families and works in both PC and UNIX environments. The
MAX+PLUS II allows seamless integration with industry-standard design entry, synthesis, and
verification tools. Figure 5.1 shows a block diagram of the Altera MAX+PLUS II environment.
MAX+PLUS II both reads and writes:

— Altera Hardware Description Language (AHDL) files and standard EDIF netlist files
— Verilog HDL files

— VHDL files

— OrCAD schematic files

In addition, MAX+PLUS II reads Xilinx netlist files and writes Standard Delay Format (SDF)
files for interface to other industry-standard CAE software. The MAX+PLUS II message
processor handles the different features like design entry, project processing, project verification
and device programming. An overview of the MAX+PLUS II compiler interface is shown in
Figure 5.2. The hierarchy display is a convenient way to switch between the different parts of the

program and shows a hierarchy tree with branches, that represents the sub designs.

Design Verification

MAX+PLUS 1l Simulator
MAX+PLUS Il Waveform Editor
MAX+PLUS Il Timing Analyzer
Other Industry-Standard

Design Entry
MAX+PLUS 1I Graphic Editor

MAX+PLUS 1 Symbol Editor) e
MAX+PLUS 11 Text Editor CAE Design Verification Tools
MAX+PLUS 1l Waveform Editor
MAX+PLUS |1 Floorptan Editor MAX+PLUS Il
AHDL Compiler 4
VHDL
Verilog HDL
Other Industry-Standard .]
CAE Design Entry Tools Device Programming
MAX+PLUS |l Programmer
Data I/0
Other Industry-Standard
Programmers

Figure 5.2: MAX+PLUS |l design environment from [9].

42

The complete MAX+PLUS II system includes 11 fully integrated applications that take the
designer through every step of creating a design. A logic design, including all sub-designs, is
called a “project” in MAX+PLUS II. The main applications are summarized in Table 5.1.

Application Function

Hierarchy display | For displaying the current hierarchy of files as a hierarchy tree with

branches, that represents sub designs.

Graphic editor For entering a schematic logic design. Altera provides primitives,

megafunctions, and macrofunctions, which serve as basic circuit-building

blocks.
Symbol editor For adding existing symbol and creating new ones.
Text editor For creating and editing text-based logic design files written in hardware

description language (AHDL, VHDL, Verilog HDL).

Waveform editor | For entering test vectors and viewing simulation results.

Floor-plan editor | For assigning logic to physical device pins and logic cell resources in a

graphic environment.

Compiler For processing project, including checking for errors, synthesizing the

logic, fitting the project into one or more Altera devices.

Simulator For testing the logical operation and internal timing of logic circuits. The
simulator supports functional simulations, timing simulations, and linked

multi-device simulation.

Timing analyzer For analyzing the performance of the logic circuits after it has been

-

synthesized and optimized by the compiler.

Programmer For programming, configuring, verifying, examining and testing Altefa's

devices.

Message processor | For displaying warning and information messages on the status of the
project. It also locates the source of a message automatically in the

original design files.

Table 5.1: MAX+PLUS Il Suite of Applications and Functions from [8].

43

C. FPGA technology and the Altera 10K50

Different devices are available to capture the developed FPGA design file. The
FLEX 10K50 chip (FLEX = flexible logic element matrix architecture) for example is a static
random access memory (RAM) with typically 70,000 gates (logic & RAM). The Flex 10K50
device contains an embedded array and a logic array. The logic array performs the same function
as a sea of gates in a gate array. It is used to implement general logic, such as counters, adders,
state machines, and multiplexers. The embedded array is used to implement memory and
specialized logic functions. Table 5.2 describes the features and benefits of using FPGAs and

Table 5.3 the features of the FLEX 10K50. A picture of the FLEX 10K50 is shown in Figure 5.3.

Feature Beneﬁt’
200 MHz and above system performance Supports today’s most demanding speed

requirements

Density from 10,000 to over 1.5 million gates | Addresses 90% of all gate array design starts

Embedded array blocks Efficient RAM, ROM, FIFO and other high-
_ performance mega-functions

Multi-Volt /O operation Ideal for mixed-voltage systems

5.0V,3.3V, 2.5V, and 1.8V device options Supports multiple operating voltages

PCI compliance Meets all specifications of the PCI local bus

Table 5.2: FLEX 10K Highlights from [9].

The Altera FLEX 10K devices are configured
at system power-up with data stored in an
Altera serial configuration EPROM device or

provided by a system controller. A

microprocessor interface that permits the
microprocessor to configure the FLEX 10K
devices serially, in parallel, synchronously or Figure 5.3: Altera FLEX 10K50 device [9].

asynchronously supports the later [9].

The features of the FLEX 10K 50 device are as shown in Table 5.3:

Features FLEX 10K50

System performance 115 MHz
Typical gates (logic & RAM) 50,000
Logic elements : 2,880
Logic array blocks 360
Embedded array blocks 10
Total RAM bits 20,480
Flip-flops 3,184
Maximum user I/O pins 310

Table 5.3: Altera FLEX 10K50 Device Features from [9].

D. DIS Architecture using FPGAs

The Concept Demonstrator: A concept demonstrator of the DIS architecture has been

developed in Field Programmable Gate Array (FPGA) technology. The concept demonstrator

comprises three parts:

— Matlab simulations of the ISAR signal processing architecture (described in Chapter 4).

— Computer board containing hardware design using an Altera FPGA device (FLEX 10K50)

— A Visual Basic program (flextest.vbp) to access the Altera FPGA computer board and
download the image-formation parameters and raw data, and upload from the board processed
data. The data gathered from the board are stored in files that are in turn read by plothwvX.m

for post-processing and display for comparison.

The DIS and its interface with the host computer is shown in Figure 5.4 as a block-
and host-interface diagram. The host computer is an ordinary personal computer (PC). The DIS
hardware is a FPGA (Altera 10K50 FPGA chip) mounted on a Naval Research Laboratory (NRL)

custom designed PC I/O board. The various modules for the DIS are described below.

45

Host (PC) Customized designed FPGA computer board (DIS)

Setup GUI [Tap 0 Tap 1 Tap 2
J &
Signal R @ Delay Delay > Delay
Generator || " |—] I l
e s |
Pr : 5 = Phase Adder ™ Phase Adder » Phase Adder
ocessing [}] &
parameters | || & l l l
[Look-Up Table Look-Up Table Look-Up Table
Range =] — T r T
Compression [] | I-
| G G
o
Azimuth é‘:_’ ;
Compression a]
l] y l v
Summer
Display | 0

Figure 5.4: Block diagram and host-interface diagram of the DIS.

Host (PC)
Setup GUI: The setup as most of the blocks of the host refer back to the MATLAB code
discussed in Chapter 4. In the GUI the user specifies the parameters for of the false target to be

generated.

Signal Generator: The DRFM phase data samples are produced within this block and printed to a
text file. This text file (rawint.txt) is used both in the MATLAB simulation file and the Visual

Basic program running the FPGA computer board.

Processing Parameters: The processing parameters of the specified false target consist of a phase
increment/decrement corresponding to the selected Doppler shift, and the gain coefficients

representing the amplitude modulation.

Range and Azimuth compression: These parts represent basic signal processing functions in the
ISAR. Pulse compression is performed on the radar return signal from the false target generated
by the FPGA DIS.

46

Display: After processing, the signals will be presented to the user as an image. In this case it will

be done by a series of plot using MATLAB (as described in Chapter 4).

FPGA DIS

Buffers: “Buffer 1” is for storage of DRFM phase data samples to be fed into the tapped delay
lines. “Buffer 2” is for storage of modulation parameters, which are computed and updated by the
host. These include parameters for target extent, amplitude modulation and Doppler shift. “Buffer

3” is for storing the outputs of the DIS (modulated signals).

Tap 0 to 2: Three tapped delay lines have been implemented using the FPGA technology in order
to study the trade-offs involved. Each tap basically consists of a delay element, implemented in
hardware using a cascaded chain of flip-flops. The phase adder together with the look-up table
provides a Doppler modulated complex signal. The gain modules provide amplitude modulation

to the signal, represented by the triangular symbols connected to the outputs of the look-up tables.

Summer: The summer adds outputs from I- and Q-channels separately together. The addition is
done by first taking a partial sum of the outputs from two last taps, and then as another step

adding this result to the output of the first tap.

The hardware used for the DIS implementation, and its interface with the host
computer is shown in Figure 5.5 and Figure 5.6. Figure 5.5 shows a photo of the host computer, a
PII 300 MHz with 128 MB RAM. Figure 5.6 shows the DIS hardware consisting of a FPGA
(Altera 10K50 FPGA chip) mounted on a Naval Research Laboratory (NRL) custom designed
computer board and can be seen inserted in the lower slot of the computer. The Altera 10K50

FPGA chip is the large device in the center of the board.

47

Figure 5.5: Picture of the concept demonstrator -- host (PC) with FPGA computer board (DIS).

R RFRKETEILEFFS FA WM XN FIER XN LWL
G et B p ool oA AN R inybne il i S i A G o AN

Figure 5.6: Picture of the customized 1-FPGA computer board used for the DIS prototype.

Processing of DRFM phase data samples by the three-tap original DIS architecture

can be visualized as follows. For each received radar chirp pulse, a set of phase samples will be -

48

provided by the DRFM. At startup, valid output data consists of only the output from Tap 0. At
the next clock cycle valid data will be the sum of processed data from Tap 0 and Tap 1. At the
third clock cycle the output will be the sum of processed data from all three taps. At the end of
the pulse, the taps are shutdown in reverse order while the phase data is propagating through the

delays. An example of 64 radar pulses and 62 DRFM phase data samples (range bins) per radar

pulse are summarized in Table 5.4.

Radar DRFM Clkk | Tap0 Tap 1 Tap 2 |Result
Pulse | Phase Data
1 D, 0 | PuD1) 0 0 Py(D1)
1 D, 1 Pu(D2) | Pou(Dy) 0 Py(D2) + Pyy1(D1)
1 D3 2 Py(Ds3) | Pari(D2) | Pos2(D1) | Po(D3) + Poy1(D2) + Posa(D1)
1 D¢ 61 | Pu(De2) | Pu+1(De1) | Pos2(Deo) | Pu(De2) + Puv1(Ds1) + Puv2(Deo)
1 - 62 0 Pp41(D62) | Pav2(De1) Pp+1(Dg2) + Puv2(De1)
1 - 63 0 0 Pu+2(Ds2) Pu+2(De2)
2 D, 64 | Pu(D1) 0 0 Po(D1)
2 D, 65 | Pu(D2) | Pou(Dy) 0 Py(D2) + Puv1(Dy)
2 Ds 66 | Py(D3) | Pusi(D2) | Pos2(D1) [Pa(D3) + Pos1(D2) + Poya(Dy)
64 De2 4093 | Py(De2) | Pav1(Ds1) | Pas2Ds0) | Po(Ds2) + Pus1(De1) + Prs2(Dso)
64 - 4094 0 Py+1(D62) | Po+2(D61) Py+1(Ds2) + Po+2(De1)
64 - 4095 0 0 Pu42(Ds2) Pr.2(Ds2)

Table 5.4: Correct Processing of DRFM Phase Samples (Original DIS Architecture).

49

Remarks concerning Table 5.4

Notation

Radar Pulse

DRFM Phase Data
Clk

Tapn

Tap n+1

Tap n+2

Result

Ppix(Dx)

The processing of DRFM phase data in the three taps that has been implemented in
hardware using FPGA technology is shown in Table 5.5. It must be noted that the implementation
of the DIS algorithm using FPGAs does not perform a correct startup and shutdown of the
individual taps when a set of DRFM phase samples is processed. Instead a data value of zero is
processed through the tap and produces an incorrect output due to the cosine look-up table (cos(0)

=]). This adds a slight error at the beginning and trailing edges of the pulse when compared with

Description

Represents one radar pulse. The number of radar pulses represents the
number of Doppler cells for the ISAR, in this case 64.

62 DRFM phase samples per radar pulse in this specific case.

Clock pulse for the DIS.

Output of the n" tap.

Output of the (n+1) tap.

Output of the (n+2) tap (the last tap in this example).

The output from the DIS.

Processed phase data in a tap available as valid output.

the MATLAB simulation that strictly follows the original DIS algorithm.

50

Radar DRFM Clk | Tapn | Tapn+l |Tap n+2 |Result

Pulse | Phase Data
1 D, 0 | PuD1) | Poui(0) | Pai2(0) |Po(Di) + Pnit(0) + Pus2(0)
1 D, PuD2) | Poui(D1) | Pus2(0) |Pu(D2) + Pos1(D1) + Pui2(0)
1 Ds 2 | PyD3) | Puni(D2) | Pusa(D1) |Pa(D3) + Pos1(D2) + Pus2(D1)
1 Diz | 61 | Pu@s) | PeiDe1) | PazDeo) | PaDe2) + PariDst) + PasaDeo)
1 0 62 | Pu(0) |Pou(Ds2) | Por2@e1) | Pa(0) + Poii(De2) + Poi2(De1)
1 0 63 | Py0) | Puu(0) | Pui2(De2) P1(0) + Pp1(0) + Pus2(De2)
1 0 64 P4(0) Py1(0) | Po2(0) Py(0) + Py+1(0) + Prs2(0)
2 D, 64 | PyDi1) | Pau(0) | Puy2(0) [Pa(Di) + Poii(0) + Prs2(0)
2 D, 65 | Pu(D2) | Posi(D1) | Pus2(0) |Pu(D2) + Posi(D1) + Ppi2(0)
2 D; 66 | Pu(D3) | Poi(D2) | Posa(D1) [Pa(D3) +Posi(D2) + Posa(D1)
64 D¢z 4096 | Pu(Ds2) | Pos1(Dé1) | Pos2(Deo) | Pu(De2) + Pos1(De1) + Pus2(Deo)
64 0 4097 | Py(0) |Poni(De2) | Pos2e1) | Pu(0) + Pos1(De2) + Pus2(Der)
64 4098 | Pu(0) | Ppa(0) |Pui2(De2) Po(0) + Pn1(0) + Prs2(De2)
64 4159 | Pu(0) | Poui(0) | Puas2(0) Py(0) + Pp41(0) + Pns2(0)

Table 5.5: Processing of DRFM Phase Samples Using FPGAs (Original DIS Architecture).

51

Remarks concerning Table 5.5

Notation

Radar Pulse

DRFM Phase Data
Clk

Tapn

Tap n+1

Tap n+2

Result

Ppx(Dx)
Py.x(0)

Description

Represents one radar pulse. The number of radar pulses represents the
number of Doppler lcells for the ISAR, in this case 64.

62 DRFM phase data samples per radar pulse in this specific case.
Clock pulse for the DIS.

Output of the n™ tap.

Output of the (n+1) tap.

Output of the (n+2) tap (the last tap in this example).

The output from the DIS.
Processed phase data sample in a tap available as valid output.

Processed “0” in a tap available as output.

Top-Level FPGA Hierarchy: The top-level hierarchy of the design using FPGAs is shown in
Figure 5.7. The bottom left hand block is the I/O-decode and Built-in-Test (BIT) block. The
purpose of the I/O decode block is to provide up to 256 addressable “internal” address spaces for

reading and writing. The other blocks have direct correspondence to the other modules in the

DIS:

— Tap-delay line (delay.gdf)

— Doppler modulation coefficient latch (phi.gdf)

— Phase summer (ph_acc.gdf)
— Look-up-table (lut.gdf)

— Gain modulation coefficient latch (gain.gdf)

— Gain modulator (newgainl.gdf)
— (shift0.gdf, shiftl.gdf, shift2.gdf)
- (mux2.gdf)

— Output summer (out_summer. gdf)

Each of these modules are described in further detail below.

52

Dual Flex 10K50 Template

Figure 5.7: Top-level FPGA hierarchy of the DIS (simple.gdf).

Tap-Delay Line: The tap-delay line schematic with 3 tap delay lines is shown in Figure 5.8. The

tap-delay lines are made up of a chain of D-flip-flops and occupy 4 internal addresses, 0x30,

of the data values written to these locations is described in

Table 5.6.
Internal Address (in hex) Function
0x30 Write “1” to reset tap-delay line, “0” otherwise.
0x31 Write any value to this address to cause a
propagation of the values down the delayv line.
0x32 Write the new DRFM value to the first tap of
| the delay line.
0x33 Unused.

Table 5.6: Internal Address Usage in the Tap Delay Line

0x31, 0x32 and 0x33. The meaning

53

Updating the tap-delay line is a 2-stage process. This is accomplished by writing any value into

address 0x31 (to effect propagation) followed by writing a new value into address 0x32 (to load
in a new value at the first tap of the delay line).

Base addr of module =

re s
Detal 'D_EQ‘C : Treset
Base addr of board +this constant VWO ; > :
AN CVRALUESH G i Lewm
e e SPLMIDTHEE w9
‘LPM_CONSTANT
: ovaiie) resuﬂ[]f BaseAder..ﬂ]
'Add -.' ' IRDDRL7? 1::4'!0:3 B]'M
BaseAddr]7..2] o o : Wri3..0]
IR‘ " IBRSELC?. . 2] WRL3. . 0]';_;.—”:-
——————)] D PROBE_!——""
: wWr : :
—"——"‘———‘_: 1UR :
e » Bl
wr2 ?“’boz W2 WO
el
P rr
Date[4.0] _19—0 N1 : T8p0[4.0] Tep1[4.9] PN L Tapfd 0]
VW2 : : :
P :
LT DoLlewn | i Lewan
m P ﬁ‘r 21, Y
: ANDZ! : URNDZ
: G: : : - Vit
e | eTE | e
R0

Figure 5.8: Schematic of the tap-delay line (delay.gdf).

54

Doppler Modulation Coefficient Latch: The phase coefficient latch (for Doppler modulation)

is comprised of a 1-of-4 decoding block and a set of flip-flops as shown in Figure 5.9.

Phi Latch

Base addr of medule =
Base addr of beard + this constant Wwr2

(LPM_CONSTANT:

s

1Adds[7..0] : FsontT o i o] : RAA3..0)
BaseAddr{7..2] o o : W(3..0]
- BASELY. . 2] URL3. . ©) —————
—IR‘ ; I1RD PROBE _L rebe
wr : :
T 1R N
'a‘c

Figure §.9: Schematic of the phase coefficient latch for Doppler modulation (phi.gdf).

55

Phase Accumulator: The phase accumulator schematic is shown in Figure 5.10 (one for each
tap). The inputs to the accumulator are the 5-bit DRFM phase samples (the values from the tap-
delay line) and the latched 5-bit phase coefficients. Furthermore, the output bit-width matches the
input bit-width (the carry-bits are discarded) representing a modulus addition operation (which is
desired). Due to truncation of values larger than 5 bits, the phase values above 27 are folded back

into the principle range between 0 and 27. The LPM-ADD-SUB module available in the Library

of Parameterized Module (LPM) is used to configure the adder.

m%urnu-mnmrf
LMD S .
........ .. L. BN RPN TCONEIANG L
L LR ADD SUB
L I - — :
: Sl Bl sccoe
DpCrscafs o | [et— —i
N
R B R
APV P PRL NG N
AP RSP IENT AN QN U IGNED -
P MO D M
.................. R R AN A
N ADT 8L
il ML dcc e
...................... st
RapOrgecifd. g L/
 SUUUTUUUUPRPRRUURNE:
..... e,
4PN _PRCL .
PR FEFRESENIAC KNS GRED™ |
LM NDrH 3 :
................. BN TRUT e
: LRkt ADD sl
: e— L sec 8
s

Figure 5.10: Schematic of the phase accumulator (ph_acc.gdf).

56

Look-Up Table (LUT): The look-up table (LUT) is indexed by the output phase from the phase
accumulator. This phase value is mapped to an 8-bit amplitude value stored in the LUT. Since the
LUT output is a complex number, a cosine and sine table indexed by the same phase is required.
The schematic diagram for the LUT is given in Figure 5.11. For the LUT configuration, a text file
is associated with each LPM_ROM module. In Altera, this file is called a memory initialization
file. A MATLAB script file (genLUT.m) which is capable of automatically generating the text-
file, based on the width and depth of the LUT desired has been used. This file generates the
memory initialization file for the LPM_ROM module (cos.mif and sin.mif). It calls two
MATLAB function files (genfixptv0.m and genfloat.m). These two programs perform the fix and

floating point conversions and are included in the Appendix.

CNCRINICTL_ CUINCERI A RIS P ™ ** 7
..... ;:E:ﬁj’ﬁﬂll-'V'ai.""”””“.: Wl&‘:’g;‘—_-rll-w-ﬂ'
JANGRDT : e et :
prove et D imegeaaer] IPMMEBID :
oo s " T LPMOROM
S LBRRONT T i '
— 3400055} o :
o — Y T PRSI
A GRS N R G)) I .
mam ind ar - thu%u—unw-mn':
UTDIAT 24 "UPERC 13T LORDT . .
: LPMLOUIDAT A UNEG (TR :
o BRERLL L g |
: UROWY " ey s] R . :
: e Y : . S YRS
RGO N LR R e
150 Leas v
APM_OUCORL AL “UNKK 1% " ERED H e D
im:g'w: s : AR S R e R m
“ene Ty, gl e ot R TUS: AP WA T S rul A =
SUTLPRACRON Y wr,n - o, :
: Lacorecsn 5 ;ﬁﬂt’;ﬂ- e "UNFEC T 7EFEDT
2 12U UMWDMIDN S e
CUULPMUOROM T
B R ey :
S : - s ==X 2 BN
5»

Figure 5.11: Schematic diagram of the look-up table (LUT) (lut.gdf).

57

flops are shown, only three of them are used (one for each tap).

Gain Latch

Base addr of module =
Base addr of bsard + this censtant wr2
1 EVALOEH 20
vt rreneenseessecrns LT WIDTHES
:LPM_CONSTANT ;
oVl resulf] BaseAddr7..0]

............................ we3
IAddrfT., | 1ADDRL? 1:F4nn:3 OJ‘—M
Baseadr[z.z) | " 1 B KT

IRd : o N * probe

———— I RD PROBE———

IW¥r : :

—1 IUR
B

wrl

Gain Modulation Coefficient Latch: The latch for the gain modulation coefficient comprises a

1-of-4 decoding block and a set of flip-flops as shown in Figure 5.12. Although four DQ flip-

wrl

“6‘: L Gain[2.0] ?”1” O Datef2.0]

Rdt

"LA | Gain2(2.0] T"&] Data[2.0]

Rd3

Figure 5.12: Schematic of the gain modulation coefficient latch (gain.gdf).

Gain Modulator: The gain modulator applies a gain to the binary signal from the LUT by
shifting the binary word towards the most significant bit position and pads zeros at the least

significant bit position. The gain modulator is shown in Figure 5.12.

: Shifte N " egat tt t TR A ana i maveraerteeNt s baran
e SN 0.0 T et ar7. @1 oUT[10. . o1 VT Shi 0.0
n gan02.0] [O—hef—s —cnrworz. . o1 :
Y
— T a—
e St 7.0 [N —mim{nr7. 2] oUTL20. . 03[P Shit_outffi0.0]
2 gani20) T Ot —jcnruira. . 03 é
.
M— S —
.............................. B0 R —men{ a1 01 oUTL20. . o2}
21 gan2.0] [—er— —{Gn1nzrz. . 03 5
27

Figure 5.12: Schematic of the gain modulation (newgain1.gdf).

The original amplitude values, as set by the user in the MATLAB GUI (the Range-Doppler-
Amplitude Map Entry Program), are “translated” into a corresponding number of positions for the

shift according to Table 5.7.

GUI Amplitude Value # of Shift Left Steps Represents decimal multiplication by
1 0 1
2 1 2
3 2 ' 2
4 3 8

Table 5.7: Translation of Gain Values

Figure 5.13 exemplifies the results of applying different gain modulation coefficients. In subplot
1 a GUI Amplitude value of “1” was applied, representing a decimal gain value of “1”, for a 3-
target cell long target. In subplot 2 to 4 the GUI Amplitude value was increased to 2, 3, and 4

respectively, representing a decimal gain value of 2, 4, and 8.

59

4 higure No. 1

.................................. T
VU R U | S

‘ '

' '

' '
' ' .

. '

O g S [, Sy S -

' : H 3
' ' ' 4
') . >

') .

' . . 3
..................... I A g <
' ') ' roe
' ') ' '

' ' ' ' ' o
' ' ' ' ' &
' ' ' ' 2 e
L 1 L 1 == =
[~ w - . S
b 2 . 3

o iy s il ! :

T T T T ,
[ro==----t1i--------- ettt il Sttty it e r==-t------ 4
' ' ' '

' ' 1 ' -
‘ ' ')
' ' ')
' ' ')
.......... Bl LRl B e St
‘ ¢ ')
' ' ')
' ' ' ’
. ' ' '
' ' ' '
||||||||||| - B e et S
' ' ' ')
' ‘ ' ' .
' ' ' ' '
' ' ' ' '
' ' : ' '
I H ! 1 1
b ~ g - [
o~ - o

Figure 5.13: A 3-Target Cell long target, with different gain modulation coefficients.

The schematic diagram of the shift primitive is shown in Figure 5.14 and the schematic diagram

of the MUX? building block is provided in Figure 5.15.

60

m " " e 3 2 rm

gaind0

unxm h
[
e
e
nOxXA -
XS :
sNn
el
U
nxa

A
e
P I

e
-
TR e

“
—4
L d
Rz I §
"
AT
»
i erT—§

X2
TORE

FORE :

MUX2

15 12,4~

“nny

wxanT
TTETTE

gain01 7]

° ° ° ° ° ° - ° °
P £ ; ‘I 4..4:,‘[e 1 FEUT (% 09 ey "T e ‘T J
b4 (2 T I3 : : 4 - 34 :
: rss N r £ € o r & € ‘e rE s N r . rss L] .. L] . rE < .
N (I B (Y IR R IR NI I [s 2o IR BN IR (EEIER

S@ys o |esE| o psE] o wEE| o [NEEfcc s L [»zoEf cr esa] oo

MUE s EE e Rz EE|fbEE[iR R - e i s EE i lREE

U5 iF BT BT BF kp RS ' N T

: oot e - : t CRE t 8 4 35 R L 4 2 4 i

O SO - i E - - il | E g R

LA IR B I - IR N R - IR - I IS I

Figure 5.14: Schematic of the shift primitive in the gain modulation block (shift0.gdf).

Figure 5.15: Schematic of the MUX2 in the gain modulation block (mux2.gdf).

61

Final Summer: The schematic of the final summer is given in Figure 5.15. This circuit
implements the addition of the tap outputs in two’s-complement. The addition in twos-
complement involves sign-extension of the numbers to be added and the discarding the carry out

bit. The LPM-ADD-SUB module, available in the LPM, is used to configure the summer.

Figure 5.16: Schematic of the final summer (out_summer.gdf).

62

E. Simulation Results

Simulation Setup: Several simulations have been done to verify that the results are as expected.
Below is one example of a simulation run to illustrate the steps and to visualize the results. In this
case the false target to be generated has the same parameters given in the example above

(MATLAB simulation) as is shown again in Figure 5.17.

+ Naval Postliraduate School

Range-Doppler-Amplitude Map Entry Program

Range Cel R »
Dopplet Cell 0

. .
Amplitude 2

Doppler

LRRNRBHYRESREY HEa pazasnasA2RA2ER23A2AS

I

O-NURdA~avHIRAZARD Y &
] |
i |

.

123466783 UNRIUBHN BBDARDINBBABBIVNNVUBIHA BN 04 120 6516 7 3OS VO HBR WRAS &2
. Rangs Cell

Figure 5.17: The range-Doppler-amplitude map entry program.

63

In this example the user has specified the data in Table 5.8 for the false target to be created by the

DIS.
Target Cell | Range Cell | Doppler Cell | Amplitude | Doppler Shift Remark
1 1 20 2 0 Tap 0 — 1* Tap
2 2 20 2 1 Tap 1 -2 Tap
3 3 20 2 2 Tap 2 - 3" Tap

Table 5.8: User Specified Inputs of the False Target

To be able to make the comparison between the MATLAB simulation and the DIS implemented

using FPGA technology, an intermediate step was added in the simulation flow as described in

Chapter 4. After the MATLAB file mathostvX.m has been executed, all necessary inputs are

available in text files to run the hardware implementation of the DIS. The interface with the

FPGA computer board is a set of Visual Basic files composed into a Visual Basic project called

FlexTest (flextest.vbp). To be able to compile and run the project and the board properly the

necessary files have to be located in a file structure with the following path:

c:\temasek\denise\thesis\final_design\vbfiles. To run the Visual Basic project FlexTest the user

must open the project, open the the_isar.bas file, and the run the file. Another GUI will show up

on the computer display to visualize the signal processing taken place in the taps of the DIS.

Simulation Results: The 2-D contour plots in Figure 5.18 show the results from the MATLAB

simulation and the results from running the DIS implemented on the Altera FPGA device.

/ Figure No. 3

s B

Cross Range Cells

. DounRange Cells Ll
by Amplitude:and Doppler Nbdulated Rd-Dp Map (HARDWARE Resut).

 Cross Range Cells .

g | __

. 30
. Dopnn Range Cells -

Figure 5.18: MATLAB DIS simulation versus FPGA hardware results.

65

Figure 5.19 shows the 3-D mesh surface plots. The first sub-plot shows the results from the
MATLAB DIS simulation. The second shows the result from the FPGA hardware. Finally, the
third sub-plot shows the difference between the MATLAB simulation and the FPGA hardware

results.

As expected, a slight difference between the MATLAB simulation and the hardware

results can be observed (note the scale on the amplitude axis of the three sub-plots). These

differences are due to the fact that the implementation of the DIS algorithm using FPGAs do not

consider a correct startup and shutdown of the individual taps when a set of DRFM phase data

from one radar pulse is processed (as discussed earlier). This contributes to a slight error in

comparison with the MATLAB simulation (that strictly follows the original DIS algorithm).

4 Figure No.

10000

5000

0
80

10000

5000

a. hplnudetDoppler Modulated Rd-Dp Map (MATLAB Simulation Result)

200

00

= i N _ e .
40 100

Cross Range Cells Down Range Cells

Figure 5.19:

MATLAB simulation result versus FPGA hardware result and their difference.

66

To verify that the errors actually are due to the difference in startup and shutdown sequences the
MATLAB simulation code was adjusted to process the phase data in the same manner as the
FPGA hardware. The results of the modified test case are shown in Figure 5.20. As expected,
there are no differences between the MATLAB simulation results and the hardware FPGA

results.

| / Figure No. 4

60

“ 100

Cross Range Cells Down Range Cells

Figure 5.20: MATLAB simulation results versus FPGA hardware results and their difference.

67

6. FPGA-TO-ASIC CONVERSION

A. FPGA Limitations

After analyzing the original, nearly complete implementation of the original
architecture, it was realized that there were several limitations being imposed on the design
solely, because the implementation was done by using FPGA technology. First and foremost was
the speed limitation. The target clock speed for the design is 2ns. This is an aggressive goal for
any new chip design and although it might eventually be possible to meet this target with an
FPGA design, in the foreseeable future, a full-custom IC has a higher probability of meeting this
speéd requirement. A second major contributing factor was the physical size of the
implementation. The initial, proof-of-concept design does not require a large number of taps.
However, even with a small number of taps the design could not be implemented into a single
FPGA. One of the goals for this initial, proof-of-concept design was to create a design that is
easily extendable to more taps. Extending the FPGA implementation to more taps would require a
significant increase in the number of FPGAs. This was considered a major drawback of the
FPGA implementation.

After realizing the limitations of the FPGA implementation, it was decided to
convert the FPGA design to an ASIC design. Several FPGA-to-ASIC conversion techniques were
investigated. This Chapter discusses the different conversion methods and their related problems.
It concludes with a summary of the problems encountered and the reasons behind choosing the

Tanner Tools environment.

B.. Altera-to-MOSIS Process Flow

The Altera-to-MOSIS conversion process investigated, attempts to translate the
design from Altera’s MaxPlus+ II implementation to a high speed ASIC fabricated by MOSIS. It

will be shown that this is very complex and that parts of the conversion process are unpredictable

- since some tools don’t have a common interface.

68

Altera to Mosis link Overview: The flowchart shown in Figure 6.1 shows the complete link
from the FPGA design in Max+Plus II, via the conversion into an ASIC design, to finally the

chip fabrication. All components will be explained and described in this section.

sueCad| Altera to Mosis Link

L
StateCad generates code]
for statemachine in AHDL G
checked by StateBench >
StateBench
Compiler create EDF
i Output of entire project
o)
z
Max+Plus II GDF MaxPlus PI'O_]CCC’ Compiler .EDO File l
D'?velop design .VHDL File
using Graphic N
Editor (.GDF) P SimGen
Q
8 % =
%0/ g g-)
Q@ 3 <
e, =1 =
%, = 3
& -£
Q
- Nettran
&
=] [
¥4 b}
=
: £
) :
2
L-Edit
<4— Mosis ¢ CIF File Compare jg—2
Compare simulated FPGA
Max+Plus II with created
ASIC layout

Figure 6.1: Flowchart — Altera to MOSIS link.

69

Remarks for Figure 6.1

GDF Graphic Design File is the file format of the Graphic Editor in Max+Plus II

AHDL Altera Hardware Description Language

EDO EDIF output file

MAC Macro file, to use between SimGen and Nettran
TPR Tanner Tools file type

CIF Chip fabrication format for the final layout
VHDL VHSIC Hardware Description Language

Program Descriptions :

RESET -~ === oy —CES ;
. D DL‘E]EL_ | A_/al:j’(:‘:"f’ ("

P Pl P
. S (= "

7" do_add

ac = (ac+s),

=

5
] =Rt -

Figure 6.2: Statecad screenshot (from [10]).

Statecad: Statecad is a powerful tool to create state machines of all kinds in an easy way [11]. It
is a graphical entry tool that allows the user to express ideas as state diagrams. Statecad has been
designed for simplicity in use as a tool for digital design, documentation and error analysis. The
Statecad GUI is shown in Figure 6.2. After validating a diagram, the program generates

simulatable and synthesizable hardware description language (HDL) code directly from the

70

diagram. The HDL is valid, consistent, maintainable, and implements the graphical diagram. The
HDL can be VHDL-1076, Verilog, ABEL-HDL, AHDL or ANSI-C. Interactive dialog boxes
provide an environment for intuitive work and help to eliminate syntax errors and incomplete
portions of state diagrams.

Once a design is completed in Statecad, it can be verified in the add-on software
Statebench. After verification, a timing test bench can be written automatically. The test bench
can be used for post synthesis timing verification.

Statebench is an add-on program to Statecad and automates behavioral verification
and VHDL/Verilog test bench generation of any state diagram created in Statecad. Automatic test
benches attempt to exercise every input, output, transition, and logic equation in a design. For
verification the program can usually check approximately 80% of the design automatically. The
remaining 20% require minor user inputs to complete the validation of the design. Statebench can
generate VHDL or Verilog test benches for post-synthesis verification by adding time constraints

that can be imported in third party test programs for further validation.

SimGen: SimGen is an EDIF to Nettran (Tanner Tools) and a FPGA to ASIC conversion utility
for Tanner Tools EDA that improves routine operation designing within the Tanner environment.
SimGen uses .EDIF or .MAC files as input and can generate VHDL files from a chip layout to
support verifications in VHDL design flows. It automatically creates simulation files (.SIM and
.VEC) for GateSim. For these types of files SimGen sets up template files with input/output lists
and restores true port names. Due to its ability to create .MAC files, it supports file import into
Tanner’s Nettran software. Since the conversion between different file formats is not
unproblematic, it attempts to clean up and repair netlists so they will work as expected when
going from one tool to another. SimGen provides a Windows control shell to activate, coordinate,
and generate command files for Tanner’s remaining DOS tools, as well as file editing functions

and waveform viewing functions [12].

Conclusion: The conversion process from Max+Plus II is long and in parts unpredictable, since
SimGen has no direct supported interface to Max+Plus II. One major issue is the incompatibility
between the library cells used in the FPGA design and the required library cells for an ASIC
design. A significant amount of hand conversion of library cells is required. This is time
consuming and potentially error prone. Other problems with this conversion approach included

the efficiency of the conversion process with respect to speed, layout area, and power

71

consumption of the final IC design, and having to do future chip expansions using FPGA tools

and then performing additional design conversions.

C. Leonardo Spectrum

An alternative program to create an ASIC can be found in Spectrum’s Leonardo
software [13]. Because of the very complicated creation of a workspace between Max+Plus II
and Spectrum’s software, as well as the missing capability to directly import file types, which are
generated by Max+Plus II, Leonardo was not chosen. Leonardo has the capability to target an
entered or imported design either as ASIC or FPGA. It comes with a couple of wizards to
optimize, retarget and improve the design. Spectrum and Altera offer the possibility to create a
working environment between MAX+PLUS II and Leonardo, which is illustrated in Table 6.1

and Figure 6.3.

MAX+PLUS II/Mentor Graphics Software Requirements
The following products are used to generate, process, synthesize, and verify a project with the

IMAX+PLUS H software and Mentor Graphics software:

Mentor Graphics Exemplar Altera
System_1076
QuickHDL
Compiler)
QuickHDL Pro .
QuickSim I Galileo Extreme V4.1.1
QuickPath MAX+PLUS I
Design Architect . Leonardo
LS_LIB library) version 9.2
ENRead version 4.1.3
) (optional)
ENWrite
DVE
GEN_LIB library

Table 6.1: Workspace Between Max+Pius Il and Leonardo

72

The MAX+PLUS II read.me file provides more information, which versions of Mentor Graphics
applications are supported by the current version of MAX+PLUS ILI. It also provides information

on installation and operating requirements that are not mentioned in this report.

v 5
- b
<z 3L
o o
£%E £XE
S S
2 =0 82=0
B
fa
I
= = —
i
b law wZ®
;w,_ﬂii: Oﬁs:
> o0ic w = ic
“
2 =
G &
sE £
=) Y
S =5 &
o L5
i = =g
i o mah
= 58
5 = & m = =B
go 5 46 3 eX E
£%s 2508l =3 5
InI T8F3 92
- 2% o
LT3x
LS
5
C"O
= -1
24 cE _ £ (=]
3| |w8E5| G| 8.2
% [> B 2L D 6 g
Q2 oW = =
= = 3 &

Figure 6.3: Block diagram for file flow and the MAX+PLUS Il / Leonardo environment (from [9]).

The flexibility of programs like MAX+PLUS II, LEONARDO, STATECAD, etc. is determined
by their ability to import files of different types. The most common types are EDIF, Verilog, and
VDHL files. One has to strictly differentiate between input and output files. Output files from

73

Altera’s MAX+PLUS 1I software are not compatible to input files of the same file extension, so
there is a need to examine the differences in more detail. The following example is based on the
MAX+PLUS 1I software, but is transferable to the other above mentioned programs: the input file
types are VHDL, Verilog, AHDL, GDF, SCH (schematic files from ORCAD) and the EDIF files
from third party synthesis tools. The output files are the files produced by Max+Plﬁs II like VO
(Verilog output netlist file), VHO (VHDL output netlist file), TDO (AHDL output netlist file)
EDO (EDIF output netlist file).

The only VHDL, Verilog or EDIF files that can be generated by the Max+Plus II
compiler after synthesis are post place & route netlist files. These files are normally used as an
input to third party simulation tools like Verilog-XL from Cadence, Modelsim from Modeltech
etc. and as input for static timing analysis tools like Primetime & Motive from Synopsys. These
netlists contain the gate level description of the design and the timing delays. The EDIF input file
into MAX+PLUS II is a synthesized netlist file. Therefore it is not possible to extract an input file

from an output file since the output files are place & route netlists.

D. American Microsystems Inc.

Another alternative to building and ASIC from an FPGA was to contract with a
company that specializes in FPGA-to-ASIC conversions, such as American Microsystems Inc.
(AMI). For this approach, the entire design had to be done in FPGA oriented software like
MaxPlus+ II and sent to AMI for the conversion. AMI also provides customers with their
software in a light version, mentioning simultaneously, that they can’t recommend this way, since
the tools are very complicated and require a lot of experience [14].

This approach was not selected and not further investigated because of several
reasons. First, the design conversion process yields an ASIC design that is readable by a
computer and cannot be read, manipulated, and modified easily by a human, even with the
appropriate CAD tools. Therefore, when the initial DIS design is eventually expanded to include
more taps, the expanded design would have to be accomplished using the FPGA tools and then
another design conversion would have to be performed by the contractor and paid for. Another
issue is the efficiency of the design conversion with respecf to speed, layout area, and power
consumption of the final IC. Although great strides have been made in automated optimization
for design conversion, much work still needs to be done in this area and chip designs that start life

as an ASIC design usually wind up being faster, smaller, and consuming less power. Finally, one

74

of the goals at the NPS Center for Joint Services Electronic Warfare is to offer students the
chance for research and the creation of projects while working towards a Master’s degree. Hiring
an outside firm to perform the design conversion would eliminate this opportunity in addition to

being costly and not ending up with an optimum design.

E. Migration to Tanner

All the above-described processes were investigated to convert the existing FPGA
design into an ASIC in order to achieve two goals. First and foremost, the high-level DIS
architecture had to be fast, both with respect to high throughput and short latency. ‘Second, the
design had to be extensible, allowing an inexpensive prototype with fewer taps to be easily turned
into a more finished product by just increasing the number of taps. After analyzing the original

architecture, it was realized that there were several limitations being imposed on the design

solely, because the implementation was done using FPGAs.

The major concemn is the speed limitation, in view of the fact that the clock speed
for the design should be close to 2ns. Although it might eventually be possible to meet this target
with an FPGA design, in the foreseeable future, a full-custom IC will have a higher probability of
meeting this speed goal.

A second major contributing factor is the physical size of the implementation. The
initial, proof-of-concept design did not require a large number of taps. However, if more taps |
were desired to build a full operational prototype, the taps would not fit into a single FPGA.
Extending the FPGA implementation to more taps would require a significant increase in the
number of FPGAs. This was considered a major drawback of the FPGA implementation.
Furthermore additional taps could not just be added on because the adder tree used to sum the
outputs of the taps for the final output would have to be redesigned. Beyond this, as the nufnber
of taps increases, either the clock speed must be slowed down (reduced throughput) or the
number of pipeline stages must be increased (increase in the total latency) to accommodate the
extra delay in the additional adders in the adder tree. The total latency is the sum of the latency in
the tap and the latency in the adder tree, which increases as the number of taps increases.

After considering the various different alternatives for design conversion, it was
realized that a dedicated ASIC design using the Tanner Tools would be the most efficient
approach. The original architecture and FPGA design allows, however, an in depth analysis of the
behavior of the algorithms being implemented in the ASIC and also allows the investigation of
future design concepts (for example, to counter stepped frequency waveforms).

75

7. Application Specific Integrated Circuit Design

A. Introduction to Tanner Tools

The Tanner Tools consist of five major integrated modules; S-Edit, T-Spice, W-
Edit, L-Edit, and Nettran. The following list presents a short overview of the complete Tanner

environment [15]:

Simulation Tools:

e T-Spice — an analog/digital circuit simulator
e GateSim — a gate-level simulator

e W-Edit — a waveform viewer

e L-Edit/Therm —-a3-D ﬁhite—element thermal analyzer

Front End and Netlist Tools:
e S-Edit — a schematic editor

e LVS - a layout-versus-schematic netlist comparator

Mask-Level-Tools:

e L-Edit - a layout editor

e L-Edit/SPR - an automatic standard cell placement and routing package
e L-Edit/Extract — a layout extractor |

e L-Edit/DRC - a design rule checker

The ordered Tanner Tool package consists of:

e L-Edit with Design Rule Checker (DRC), Extract, and Std Place and Route (SPR)
e S-Edit (Schematic Editor)

e LVS (Layout vs. Schematic)

o T-Spice Pro with Adv Model Library

e W-Edit (Waveform Viewer)

e Tanner Tools Pro Manuals

76

Figure 7.1 [15] illustrates a schematic overview of the Tanner environment and the
data flow between the different programs of the package. The main environment consists of the
programs S-Edit, LVS and L-Edit, where L-Edit finally saves the layout in a GDSII or CIF file
that is sent to MOSIS for chip fabrication. The other components may not be used but are shown

for completeness.

Tanner Flow I GateSim '
Gate-level Timing Sim

Technology
Independant

‘S-Edit
. Schematic Editor

Library

T-Spice
Circuit Simulator

- LVS

< = Netlist
| _ Netlist Tool __ | ___________________. Comparator |
Mask Level Tools W-Edit Advanced
*{} Wave Form Model
Viewer Package

(L-Edit/SPR | L-Edit/Extract
Standard Cell | General Device
L Place&Route Extractor

>

L-Edit
Full Custom Layout
_ Editor

GDSI&CIF

MOSIS

_
s

L-Edit/DRC
On-line Design
Rule Checker

Cross Section
Viewer

Figure 7.1: Tanner Tools block diagram (from [15]).

77

Nettran: Nettran is a subprogram within the Tanner Tools that has routines and libraries to
import different file types. It is used as a netlist translation application to ensure file exchange
between the different tools and other applications. Figure 7.2 [] below illustrates how Nettran fits

into the Tanner Tools environment. The use of Nettran is required to translate S-Edit files into the

| S-Edit l

appropriate format.

Third party tools = Né_ttran = Vendor format files

L-Edit/SPR

Figure 7.2: Nettran function block diagram (from [15]).

Nettran offers the capability to translate either wirelist, netlist, or EDIF files from
third party tools like OrCad to standard Spice format, GateSim, or L-Edit netlist formats. Due to
extended capabilities, S-Edit is now able to export a Tanner Data Base file (.TDB) that can be

directly imported into L-Edit.

L-Edit: L-Edit is a physical design layout editor that creates the device level fabrication files
necessary to realize the integrated circuit. L-Edit/DRC performs a design rule check for the
intended fabrication process and can optimize the place & route. L-Edit/SPR generates layouts
for standard cell design and can automatically construct entire chips. It includes cell placement
and routing, pad frame generation, and pad routing. SPR reads netlist files produced by S-Edit
and creates masks ready for fabrication. L-Edit/Extract creates SPICE-compatible circuit netlists

78

from L-Edit layouts. The output can be exported in either GDSII or CIF file format for

fabrication.

S-Edit: S-Edit is a schematic editor that allows the user to enter the electronic layout of a circuit.
For research and prototype devices intended for MOSIS fabrication, it contains a complete
MOSIS library of components for each of the different scheduled runs. S-Edit can directly
generate netlists that are usable in T-Spice simulations, where a direct link writes a complete
schematic directly into T-Spice. This program is used to create the Digital Image Synthesizer
circuit in order to create the new ASIC design.

S-Edit has two main workspaces, the schematic editor and the symbol editor.
Besides the creation of electronic circuits in the schematic editor, the user can create a symbol for
a circuit of any size in the symbol editor. Due to this possibility, S-Edit is able to handle different
levels of a project. For the DIS project, S-Edit is used to construct a hierarchy consisting of five
levels, where the lower levels provide the higher levels with building blocks to create more

complex circuits.

LVS: LVS is a layout-versus-schematic netlist comparator to compare the exported netlist from
S-Edit and the extracted netlist from L-Edit/Extract. It can also compare the layout with any other
SPICE compatible netlist and ensures that both netlists represent the same circuit.

After completion of the testing phase, the layout mask will be generated in L-
Edit/SPR. In order to compare the layout mask with the schematic circuit of the design, LVS is
used to compare the netlists of both representations. This guarantees the equality of the layout
with the tested circuit before the design is sent to fabrication. As shown in Figure 7.3, the
differences after netlist comparison flow back into the T-Spice simulator and L-Edit for editing

the compared files by hand. Finally this procedure will ensure the equality of the circuits.

T-Spice Pro: T-Spice Pro is a complete circuit design and analysis system which includes T-
' Spice, the Advanced Model Package, W-Edit, and S-Edit. T-Spice is a circuit simulator that
simulates an entire circuit design with more than 300,000 circuit elements. It also has features
that allow not only circuit simulation but also circuit design. The input language is SPICE. T-
Spice Advanced Model Package consist of the latest transmission and semiconductor device

models to achieve more realistic simulation results that are closer to real world behavior.

79

S-Edit (described above) provides a direct link to T-Spice, which makes the translation of the
schematic design into a spice file easy. By adding parameters for testing purposes and bit pattern
test vectors, the circuit logic can be tested before layout. T-Spice offers only a semi-usable
algorithm for binary testing. The input data to the circuit are binary (0=0V, 1=5V), but the output
will be in real voltages instead of binary word. Therefore the outputs are limited in usage. The

user can however, easily develop a hard limiting function in Matlab in order to convert the output

into binary values.

W-Edit: W-Edit is a waveform editor that acts primarily as a back-end data processor for the data
generated in T-Spice. It is designed to display T-Spice simulation output waveforms. W-Edit was

used to verify the functionality of small circuits like a register cell or a 2 input NAND gate. It is

not useful for larger circuits.

T-Spice L-Edit

—————mm e =
%omparison , 1 <
e —— - =)

%]

Lv

L = = - ~| Difference | = = = =

Figure 7.3: Flow for Netlist comparison.

80

B. Digital Image Synthesizer Architecture

This section will focus on the new DIS design and discuss its implementation in
detail. The ASIC architecture is based on the modified architecture concept, where a tap and its
associated range bin processing is now called a tapline to distinguish between the two
implementations. The general data flow within a tapline is shown in Figure 7.4. The main

differences between the original architecture and the modified architecture as implemented in a

ASIC can be summarized as follows:

% }.’!}!}.F.‘.’IH'RFM Phase
4 " Data
Phase Increment .l————L
Values Phasidder _
?ipeliﬁe'chistef 1
LUT
Pipeline Register 2 Pipeline Register 2

DAL]

Gain ---------
Coefficients
Pipeline Register 3. Pipeline Register 3
OEPPIIPIIIIILIIIIDPIIOISILSIL LIS LINILOSLLIPLLLL, .H!!?.’.‘!.‘p.‘?}?h'}!.‘;.rap]ine N+l
L L I'and Q Output
Adder Adder
Pipeline Register 4 Pipeline Register 4

¥

To Tapline N-1 (*
or Final Output

Figure 7.4: Tapline in ASIC architecture.

Tapline N - I and Q Output

81

1. Parallel DRFM phase data input into all (32) taplines simultaneously instead of serial inputs
through a tap delay line.

2. Addition of registers in the data flow of a tapline (pipelining).

3. Serial summation of the tapline data output in order to implement the necessary delay and add
the output data in correct sequence for the final output.

4. Adding of a scan path test capability.

vThe DRFM phase data are the main inputs for a tapline. For now, the integrated
circuit contains 32 taplines, which synchronously receive (no delay) the same clocked DRFM
phase data as input. In the Phase Adder, the DRFM phése data and a phase increment value are
added. The phase increment rotates for every radar pulse as already explained in the FPGA
architecture discussion. The result of the phase addition in the first adder continues to propagate
into Pipeline Register 1, where it is available for the LUT (Look Up Table) after the first clock
cycle. The LUT uses this input as a pointer to an address space in the LUT-ROM and puts the
resulting I and Q values, into Pipeline Register two. After the second clock cycle the values can
penetrate into the gain block where the appropriate gain is applied. After the third clock cycle the

values can enter into the second adder. The operation of this adder is to combine the inputs from

DRFM Phase Data Bus R
Tap n Tap n+1 Tap n+2 Tap n+3
y A
Pipe- Pipe- Pipe- Pipe-
lined lined lined lined
Process Process Process Process From

next

— r Ta
I Sum |« { Sum '|= { Sum lr Sum J‘-'——P

K

Re‘s'ult
Figure 7.5: Simplified data flow in the ASIC architecture.

) the other taps. Figure 7.5 illustrates the concept of the summation. To compensate for not having
delay in the input DRFM phase data, delay is automatically achieved during the second addition
(“Sum” in Figure 7.5) by using a pipelined adder chain instead of an adder tree. Recall that the
processed DFRM ‘phase data results in an tapline output are of the form Py(D3) + Ppa(D2) +
Py.2(D)), achieved in the original architecture by delaying the DRFM input data, propagating

82

through all available taps and parallel summation at the end of the process. In the modified
arcitecture, the adder chain not only creates the required delay but it also eliminates the two most
significant problems of the original design. First, adder chains are easily extensible since
additional adders can be chained together, output to input (as long as the adders do not overflow).
If the adder overflows, it is a simple process to increase the number of bits in an adder cell in a
VLSI library. Second, in a pipelined design, the total pipeline latency from the first input data to
the first output data is the pipeline latency in the tapline plus the pipeline delay of only one adder.
Thus, as the number of taplines increases, the latency stays the same. Of course, the latency from
the last phase data input sample to the last output result does increase but this is inherent in the
algorithm being used and occurs in both designs. |

As shown in Figure 7.4 and Figure 7.5, every tapline adds the processed data from
its own line with the output data from the next higher tapline. The result is a chain of data
between the first and the last used tapline. Table 7.1 illustrates this concept. The clock cycles
used so far to describe the data flow in the tapline ignore the time necessary to load the inputs
into the IC. The considerartion in Table 7.1 simplifies this even more and assumes, that no time is
needed to process the data within a tapline. In this example tapline n (T,) is the first one in a row
of three taplines. The output of T, is the final output, consisting of I and Q values. After clock
one, every tapline produces an output with the same DRFM phase data (D;) presented as input.
With clock two the output of T,.2 gets added to the processed data (D;) in T, and the output of
T+ gets added to the processed data (D-) in T,.. In continuation of this concept, the final output is

the same as for the already proven FPGA architecture.

&3

Radar | DRFM | CLK tapline n tapline n+l1 tapline n+2
Pulse | Data
1 D, 0 [Pu(D)+0+0 Po1(D1) +0 Pps2(D1)
1 D, 1 [Pu(D3) +Pu@®D1) +0 Pu+1(D5) + Pya(Dy) Py.2(Ds)
1 D3 2 Pn(DB) + Pn+1 (DZ) + Pn+2(D1) P n+l(D3) + Pn+2(D2) Pn+2(D3)
1 Dy 3 |Pu(D4) + Ppyi(D3)+ Poya(Do) Py+1(Dyg) + Ppsa(Ds3) Py12(Dy)
1 Ds2 61 | Py(Ds2) + Pui1(De1) + Pui2(Ds0) | Pns1(De2) + Pos2(De1) | Pos2(Ds2)
1 - 62 0 + Ppy1(Ds2) + Poi2(De1) 0 + Ppy2(Ds2) 0
1 - 63 0+ 0+ Pp2(Dg2) 0+0 0
1 - 64 0 0+0 0
2 D, 65 |Pu(D1)+0+0 Ppi(D1) +0 Pyi2(Dy)
2 D, 66 |Py(D7) +Pyi(D1)+0 Ppi1(D2) + Poya(D)) Py.2(D3)
2 D3 67 |Pu(D3) +Puii(D3) + Poia(Dy) Pr11(D3) + Pnya(Ds) Prio(Ds)
2 D4 68 |P n(D4) + Pn+l(D3)+ Pn+2(D2) Pn+l(D4) + Pn+2(D3) Pn+2(D4)
64 D2 (4093 | Pu(Ds2) + Pur1(Ds1) + Paia(Deo) | Pori(De2) + Pus2(Ds1) | Pas2(Ds2)
64 - 4094 0+ Pn+1 (D62) + Pn+2(D61) 0+ Pn+2(D62) 0
64 - 4095 0+ 0+ Ppi2(Ds2) 0+0 0
64 - 4096 0 0+0 0

Table 7.1: Tapline Outputs with Three Taplines.

Remarks concerning Table 7.1

Notation

Radar Pulse
DRFM Phase Data
CLK

Tapline n

Tapline n+1
Tapline n+2

P n+x(Dx)

Description

Represents one radar pulse split into DRFM phase data

62 DRFM phase data samples per radar pulse

Clock pulse for the example.

Output of the n™ tap.
Output of the (n+1) tap.

Output of the (n+2) tap, last tap in the example

Processed phase data sample available at designated tapline output.

84

Table 7.1 ignores the time that is needed to process data within a tapline. To complete this
discussion, Table 7.2 summarizes the amount of time in terms of clock cycles from presenting

new DRFM phase data to a tapline until the final output at the end of the tapline.

Clock Cycle Output available at:

0 Phase Accumulator

1 Output of Pipeline Register 1 (5-bit)

2 Output of Pipeline Register 2 (8-bit)

3 Output of Pipeline Register 3 (11-bit)

4 Output of Pipeline Register 4 (16-bit), end of tapline

Table 7.2: Clock cycles in a tapline.

Before data can be processed in a tapline, the data needs to be loaded into the
integrated circuit. In spite of this fact this section considers only the concept of a tapline, with the
load cycles addressed later on in this section.

Due to the adaptation of registers between the building blocks of a tapline, it was
possible to install a test path to improve the testability and functionality for the entire IC. This
scan path test capability can be used to strobe values into the registers to produce results for
special test cases. The test vectors within the registers can then be processed for a desirable
number of clock cycles before they are read out again. The implemented scan path is also part of

the discussion later on in this chapter.

85

C. S-Edit Implementation

The following section provides information how the concept is implemented into S-
Edit. Since the program supports design hierarchy, the DIS was divided into five design levels.
To increase the functionality and the signal flow control several control signals were introduced.
These control signals are also used to indicate the states (valid/not valid) of the output data.
Furthermore a scan path test capability was installed to enhance the testability for sub-levels

during the test phase and to verify correct IC operation.

Design Hierarchy: S-Edit is a schematic editor to enter an electronic layout of a circuit. It is
capable of creating hierarchical circuits by using predefined or user created modules. Tanner
provides the customer with a great variety of modules and building blocks, but only a few of

them were used to build circuits on the lower levels.

The DIS design in S-Edit consists of five levels. The first level is represented by
low-level building blocks like transistors and logic gates. Using blocks from lower hierarchy
levels allows creating higher levels in order to increase the complexity stepwise. This concept

provides two main advantages:

1. The logic of the design is more obvious, easier to understand, and easier to verify.
2. The layout editor (L-Edit) can use the same hierarchy to synthesize the mask stepwise.
Since the hierarchical layout process allows a slow increase in the complexity, the layout

editing is easier, more reliable, more efficient and faster.
The following hierarchy tree illustrates the structure of the DIS in S-Edit:

Level 1: elementary building elements from existing libraries or modified library elements. This

includes for example, a register cell, an adder cell, a Mux2, transistors and all logic

gates.

Level 2: builds on elements from level 1 to create: 5-to-32-bit decoder part 1, 5-to-32-bit
decoder part 2, the LUT-ROM, Gain Shift, N-bit register, and N-bit adder.

Level 3: makes use of the elements from level 2 and 1 to build the tapline.

86

used in S-Edit.

(A S=66°111

(PS=2441
T0 W =284

P,

M =1]

(A D=%56°11)

[PD=24%1]

Figure 7.6: P-FET transistor.

Architecture Circuit Description in Level 1:

Level 4: the Supertap and the Supertap Mirror consist of level 3 and level 1 components.

Level 5: includes and 5-to32-Bit LUT and extends the concept of level 4 components to create

the top level circuit with input pads and output pads.

These levels will be discussed in more detail. A complete graphical representation of the building

blocks can be found in the Appendix, divided into symbols and schematics for all sub-circuits

The very basic elements in the new design are the P-FET and the

N-FET transistors. These types of transistors are represented only

by a schematic appearance, which is specified by a Spice output

statement, as shown in Figure 7.6. The Spice output defines the

transistor in gate length and width and providés even more

editable parameters that are not relevant for the current design

and therefore are not mentioned here. The important parameters

are multiples of lambda (1), so the transistor is scaleable and can be used for different layout

D,
L

o

D,
)

3)_

B>

A[invA B[invB Ci[invCi

’

Figure 7.7: Adder cell.

87

processes. Due to cost reasons and
availability of certain process runs at
MOSIS, it was decided to go with a HP
0.5um process. Nevertheless, if the
concept is proved and the IC is fully
operational, the target process can be
easily changed to a smaller (faster) size
without any changes to the existing design
in S-Edit.

The adder cell and register
cells, as shown in Figures 5.7 and 5.8, are

building blocks to create n-bit adders or n-

bit registers. The adder cell can add two 1-bit binary input words. The input pads are labeled A

and B, where the third input pad, Ci the carry-in bit is used to connect two or more adder cells.

The carry output pad, Co and the output pad S define the 2-bit output word. The function of the

cell is described by the following two equations:

S =invB *invCi + invA * B * invCi +

+invA *invB*Ci+ A *B *Ci (7.1)

Co=A*B+B*Ci+A*Ci (7.2)

To build an n-bit adder, Co of cell N has to be connected to Ci of cell N+1. A 5-bit adder and a

16-bit adder are part of level 2 in the hierarchy.

=
=,

7

D1
et

Figure 7.8: Register cell.

The<register cell is used to implement the
scan path test and to give control over the
data flow in the tapline logic. The control
logic consists of hold, load, clock, and the
scan path pads. Besides the clock, only one
of the control signals is allowed to become
high at the same time. If load goes high,
the register performs normal operations
and “clocks” the input to the output. A
logical high for “hold” freezes the last

processed value and ignores new input

data. If all control pads are low at the same time, the register is forced to perform a synchronous

clear (all outputs become low). To make an n-bit register, Q of cell N must be connected to SRDi

of cell N+1 and Q of cell N must be connected to SLDi of cell N-1, where the register control

pads are connected in parallel. A 2-bit register, a 4-bit register, a 5-bit register, a 8-bit register, a

11-bit register, and a 16-bit register are part of level 2 of the hierarchy.

88

Architecture Circuit Description in Level 2:

NESENERENIREEEEEE

5-t0-32 Decoder part 2

LRI LRI R R B SRR RN

$EFET S SRR

Figure 7.9: LUT module.

Level 2 elements are the building blocks for a tapline. The Look-up-Table (LUT) is
shown in Figure 7.9 and is a composition of three sub building blocks that are shown in the
Appendix: 5-to-32 bit decoder part 1, 5-to-32 bit decoder part 2, and the LUT-ROM. The two

decoder translate the 5 bit input word into an address space of 32 possible inputs, that are used to

R g T

-0

:J‘”L..@

:"_ j_‘“{ cos?2 >

)

r'_j—” {cosl >

R T
o+

i'—l—o
)
i

- — - — —J

Figure 7.10: Part of LUT-ROM.

trigger the LUT-ROM. Depending on this input, the ROM module makes the corresponding table
look up available at the output. Figure 7.10 shows only a small part of the LUT-ROM to illustrate

89

the structure. The entire block is shown in the Appendix. The ROM consists of 32 double rows of
transistors with a length of 16 transistors per row, each divided into two columns. Every double
row represents a 2 * 8 bit value, the cos (I) and sin (Q) outputs. The code values are created by

adding P- and N-FET transistors as shown in Table 7.3 below:

Program a “0” Program a “1”

Set N-FET transistor in row for | Set P-FET transistor in row for

input pad W, input pad inv_W,

Table 7.3: LUT Programming.

The LUT block requires a 5 bit input word that will be translated in two pre-
programmed, 8 bit output words. Note that the Altera design used two tables, one for I outputs
and one for Q outputs. Due to a extended-decoder architecture in the modified design, both tables
could be combined in one building block to reduce the amount of transistors.

The Gain Shifter “multiplies” the input by performing a shift of the input word. The
binary input pads Gain0 and Gainl as shown in Figure 7.12 determine the amount of shift or gain

applied to the two’s complement input word. Table 7.4 illustrates the gain effects on the input.

Binary Input Gain | Multiplication Effect on binary input word
Gainl GainO | Factor Factor
0 0 0 1 No effect on input word; input = output
0 1 1 2 Input word gets shifted by one digit to the left,

For example: input=1101
Output = 11010

1 0 2 4 Input word gets shifted by two digit to the left,
For example: Input=1101
Output = 110100

1 1 3 8 Input word gets shifted by three digit to the left,
For example: Input=1101
Output = 1101000

Table 7.4: Gain Shift.

90

Gain0 and Gainl are loaded into a two-bit register, where they are available for the

Gain Shifter as inputs. The gain factor in Table 7.4 is the integer representation of the two gain

inputs. They are related to a multiplication factor as specified in the Matlab m-file Range-

Mi:m o

MuxB Jo—jme Seos

Select B s =
Figure 7.11: Mux symbol.

Doppler-Amplitude Map Entry Program already
mentioned and described in previous chapters. The
Gain Shift block is a composition of slightly
modified Mux2 Tanner library elements, where one

is shown in Figure 7.11. The modification was

necessary, because of the reverse output available compared to the Altera Mux2 output. The logic

equation of the modified Mux component can be described as:

Out = MuxA * not_Sel + MuxB * Sel (7.3)

Figure 7.12 illustrates the concept of the Gain Shift block. It shows the logic that leads to the shift

of the two’s complement binary input. The Gain Shift block or Gain Modulator requires an 8-bit

two’s complement input word and two Gain coefficients (Gain0, Gainl). Due to the highest

possible shift of three digits with gain coefficients of Gain0=1 and Gainl=1, the output word can

be an 11-bit two’s complement binary number.

91

0300

R
L] w sn..»,a Yoy
R oo 23 s
-]
ey u NO™X; e
szaM omy u oy
=~ =
ony u In0™¥m) YR
guﬂan any u 0073
o p-—r uvﬁva
Ll] u I0"amy oy
ﬁzomM g u pLopy
YK p—1 »U_omM
L u 007 [
p s =3 ang u 0"y
= || =
[u 1007xm) v
r—1 yuo_»mM a0 u 1007m
- p—1 uuo_vWM
L
oW 00™m [
uuw—va NN u MO XTy
- p— uVonomM
»q
By A0 Ya
ﬁ:MM oy u oy
p—— ~8~$M
vy
om u 907}
P ——
v
any u My
o uVu—UmM
5 g
3] 3
LD

Figure 7.12: Gain shift block.

92

Architecture Circuit Description in Level 3:

The tapline is shown in Figure 7.13 and is the only element in level 3. It is
considered to be the central building block of the DIS since every other block in higher design
levels is an extension of this block. The chip capabilities are directly related to the number of
taplines implemented in the chip. Every tapline that is added to the chip extends the possible size

of the false target. In reference to the Range Doppler Map Entry, one tapline in the hardware

g
ooa] Trooe mg1
@ 1h

Val(3 Vaioe Bos

Fipelie tag &
1

Figure 7.13: The tapline.

93

represents a single cell in the Range-Doppler Map. Currently the chip design contains 32 taplines.
Therefore the target extent is 32 cells in the “Range-Doppler-Amplitude Map Entry program”,

which can be related to a physical extend of the false target of
1.2m (for each cell) * 32 taplines = 38.4m. (7.4)

Due to the complexity

EEEE hase Rotation .
EHE ZTI 7 r&m— of the tapline, it is split into three
£|588 | | sub blocks. The control signals and
1 L Phase Inc Reg =3 o
oy e & sle the scan path test are not part of the
:v’ g il-o :g o gte . .
ot # Efe —s T discussion and are excluded for
] E- e"a 8 :
: | now. The first block is called the
Increment . .
=N output Phase Incrementer and is shown in
EEEEE] V " : -
s-sit - adder Figure 7.14. It consists of a 4-bit
shase Toe Ak | | | register, a 5 bit-register and a 5-bit

Figure 7.14: Tapline phase increment. adder and requires a 4-bit binary
input word. The two’s-complement
binary input is the desired phase
increment value wPRI that has to be added to the DRFM phase data. The phase incrementer
supplies integer multiples of the desired phase increment (n@PRI) to the phase data on a pulse-
to-pulse basis. That is, due to the phase rotation requirement, the output of the phase incrementer
has to change (increase or decrease) by the amount of the phase increment value for every new
pulse. The increment value supplied to the tapline may be constant over several radar pulses
(constant Doppler frequency). To achieve this “constant” adding the increment value is used as
the first input for the 5-bit adder, where the connection between bit 4 and 5 is the sign extension.
The adder output goes into a 5-bit register that is connected to the 5-bit adder. Due to this
construction, the output of the 5-bit adder is always a n-multiple (n = 1, 2, ...) of the original
"input. The phase rotation can be adjusted by control signals, which control the registers in this
block. The master clock controls the overall behavior of the registers. Since a register needs one
clock cycle to produce a valid output, the Phase Incrementer has a requirement of at least one
clock cycle before a valid result is at the output. The phase increment in the 5-bit register needs to

be activated exactly one clock cycle before a new pulse with new DRFM phase data can be

94

processed. The output of the Phase Incrementer is a 2-complement binary word, which is the

input to the next logical block, the LUT-Module.

Phase

Incrementer

CEERERE]
5-Bit

DRFM Phase Data

3 3 35 %

Phase Acc

T7ege

8-Bit Reg [
for Q-Block [

wwwwwwww

1N

Figure 7.15: Tapline LUT-module.

3 o
Q
*la & Lo
o—{ e " :
ol ; E Lo Pipeline Reg 1
o— 3 v
vy
LuT
sin-table-output cos-table-output
5 3 83 5 8 38 Z 2 2 = 3 =z = =
Pipeline Reg 2

117¢8¢

for 1-Block §

wwwwwwww

* 8-Bit Reg [

l

A

LUT Block Output

The LUT-Module shown in Figure

715 is the second sub block of the tapline. It

consists of a 5-bit adder, a 5-bit register, a LUT
for I and Q values, and a 8-bit register. The adder
takes the DRFM phase data inputs and the Phase
Incrementer outputs and adds them together. Note
that the addition of two 5-bit binary words could
result in a 6-bit word. This fact can be ignored,
since the Phase Incrementer output is a phase
value repeating over a period of 2pi. Therefore the
adder output, in conjunction with the cos and sin
LUT, can also be seen as a periodic output over 5-
bit.

The adder output goes into a 5-bit
register (Pipeline Reg 1), where it is available at
the output after one clock cycle. The LUT block
takes the 5-bit input word and uses it as an
address to find the corresponding I and Q values

in the sine/cosine LUT as described earlier. From

this point the signal flow is divided into two streams (I and Q values). Nevertheless the

operations performed on these values will be the same up to the final output at the end of the first

tapline. The LUT output data are inputs to an 8-bit register (Pipeline Reg 2) and become available

at the output after the next clock cycle.
The third sub block of the tapline is the “Gain and Adder block” as shown in Figure
~ 7.16. It consists of a Gain Shift block with a gain register, a 16-bit adder, and a 16-bit register
each for the I and Q part of the tapline (compare also with Figure 7.13). The input to the Gain
Shift is the output of the LUT. As described earlier, the Gain Shift performs a shift of the input

values in accordance with the specified gain coefficients. The output results in a 2-complement

11-bit word for each stream. After one clock cycle the values are present at the output of the

following 11-bit register (Pipeline Reg 3).

95

The 16-bit adder takes two inputs. One is the output of the Gain Shift block, which
again requires a sign extension to the most significant bit achieved by the connection of bit 11 to
15. The second input is the output of the tapline that is the next higher in a line of 32 taplines.
This illustrates the concept mentioned at the beginning of this chapter. To recall, imagine that the
so far considered tapline is tapline #1. The next higher tapline is #2. After 4 clock cycles the first
outputs at both taplines are available (see Table 7.2), where tapline #2 presents its values to the
16-bit adder of tapline#1. With the next clock cycle, these output values of tapline #2 present at
the adder get added to the next data in tapline #1 coming out of the 11-bit register after the Gain
Shift. After the addition in the 16-bit adder the values are present to the input to the last register
(Pipeline Reg 4) in the tapline. After one more clock cycle, the values in form of 16-bit 2-
complement words are available at the tapline output.

All of the three sub blocks that were discussed have control and test signals
managing the data flow to achieve the physical requirements for the DIS. These signals are not
part of this section but are discussed in detail later on. Furthermore, there are four 1-bit registers
on the right hand side only shown in Figure 7.13, that were not part of the discussion either.
These registers are used to allow particular control signals to penetrate through the tapline

synchronously with the clock.

11111911 7797717°7¢%

a=E Pipeline Reg 3

for Q-Block *[° for I-Block

oy oy
lat . il bal . 5
s 11-Bit Reg 1« 11-Bit Reg

e Kl i o= g B

preey

3333538835833 8358

Figure 7.16: Tapline gain and adder block.
96

Architecture Circuit Description in Level 4:

Level 4 of the design construct in S-Edit pursues the tapline regarding the addition.
Figure 7.17 shows a so-called Supertap, which consists of eight taplines connected in series. A
Supertap has the same control signals and output pads as a tapline, but requires more input pads
for signals that are not the same for every tapline. For example the gain coefficients, the phase
increment values, and the target extent control signal are different for the distinguished’taplines.
The target extend is explained under the control signal section and will be disregard for now. The
gain coefficients and phase increment values are important values for the false target generation.

Due to the addition process in the 16-bit adder in the new architecture the DRFM

phase samples are the same for every tapline as illustrate earlier in this chapter. The 2*16-bit

oo 09

LT

Tap Line 6

Output Eé'
Figure 7.17: Supertap schematics

input pads on the right hand side of Figure 7.17 can be used to connect another Supertap in series.
Due to this open concept of serialising Supertaps, in theory any number of Supertaps could be
easily chained together without a need to modify the existing design. The number of Supertaps is
therefore limited only to the size of the chip and the current available technology for fnask layout.
If the desired false-target-extent is larger than the available Supertaps that could fit into an IC,
several ICs can be “daisy-chained” together to increase the possibilities for false target

generation.

97

Architecture Circuit Description in Level 5:

Level 5 is the highest level of the current design. As shown in Figure 7.18, four
Supertaps are connected in series to get an overall number of 32 taplines (eight taplines per
Supertap) for the first IC production. A 5-to-32-Decoder is used to control the target-extent
control signal in the form of a truth table. If the required target size is smaller than the available
number of taplines, it is not necessary to use all taplines. The decoder generates control signals to
activate the needed number of taplines. To illustrate, a five-bit input word can represent numbers
between 0 and 31. These nurribers are directly telated to the tapline enumeration as shown in
Figure 7.17. If the generation of a false target requires 5 taplines, the binary input to the decoder
is 00110, which activates tapline O to 4 in Supertap A (lower left corner in Figure 7.18). The

schematics of the decoder can be found in the Appendix.

JR—— - I —— o
i Pong nl w tol nen med me w b onen mn gl omed el el ml el
{ 4 Super Tap D i ! Super Tap C !
I i i H H
1 -
. — o 1E B !
J
LT e ' , e '
o ow ot w wow wh b et il el Tel) s
Super Tap A ¢ ¢ Super Tap B . H
0-7 ‘g’ 8-15 '

oo Dutathe 1

Figure 7.18: Toplevel of the DIS ASIC architecture

98

The input and output pads used in Level S can be described as follows:

Inputs: |
¢ Supertap D has two16-bit input pads for I and Q values to connect Supertaps in series. For

this layout, they are connected to ground to exclude possible side effects based on pending or
floating hddes.

e 5-bit binary word for the 5-to-32-Decoder to control the target, as mentioned above.

e A master clock, which is connected in parallel to clock input pads throughout all five levels.

¢ Control signals for the scan path test (SR, SL, S_P_Test_Rin, S_P_Test_Lin)

e 2 *32 =064 gain coefficients (Gain0/Gainl for each tapline)

o 4%32=128 phase increment values (phase_inc0/1/2/3 for each tapline)

¢ 5-bit DRFM signal (same input for all tapline)

e 1-bit control pads to control the data flow in the chip (load_phase, delta_Phase_increment,
Range_bin_valid, Load_Gain_Reg and overflow_in). These signals are discussed in the next
section.

Outputs:

¢ Final summation in Supertap A (output of I and Q values for the false target), which can be
used to import the results into Matlab for plotting.

¢ Control signals for the scan path test (S_P_Test_Rout, .S_P__Test_Lout)

e 1-bit control pads to verify the output result of the chip (OVERFLOW_OUT AND
VALID_RESULT_OUT). These signals are discussed in the next section.

With a total of two gain coefficients and four phase increment inputs per tapline and
32 taplines for the current design, a total of 192 input pins are required. Adding this many pins to
the number of high-speed input and output pins would greatly increase the cost of IC fabrication
and the complexity and cost of using the finished IC in a system. Furthermore, when the nurﬁber
of taplines is increased in the future, this problem would become even worse. However, the
inputs to set the gain coefficients and the phase increment value should only change at the
beginning of a new radar pulse, not on every sample within a radar pulse. Therefore, the gain
coefficient and phase increment inputs are relatively low bandwidth and can be bussed together.
To maintain compatibility with off-the-shelf, digital signal processing microprocessors and
components, a 32-bit input bus has been designed for the top-level design. The 64 gain
coefficient inputs for 32 taplines (2 per tap) are loaded in two bus cycles. The 128 inputs for 32

99

taplines (4 per tap) for the phase increment are loaded in four bus cycles. Table 7.5 lists the bus

cycles and the control signals, and represents an example for how the inputs could be loaded into

the IC.
Bus-CLK Control Signal Function
1 Load gain Reg Tap 0-15 Loads the gain coefficients for tapline 0-15
2 Load gain Reg Tap 16-31 | Loads the gain coefficients for tapline 16-31
3 Load Phase Inc Supertap A | Loads the 4-bit phase increment value into taplines 0-
7
4 Load Phase Inc Supertap B | Loads the 4-bit phase increment value into taplines 8-
15
5 Load Phase Inc Supertap C | Loads the 4-bit phase increment value into taplines
16-23
6 Load Phase Inc Supertap D | Loads the 4-bit phase increment value into taplines
24-31

Table 7.5: Loading of Bussed Inputs

The current design can be easily expanded to include more than 32 taplines without

a further increase in on-chip hardware related to the bus or the number of I/O pins. All that it

necessary is to connect the gain coefficient inputs and phase increment inputs from each tapline

to the bus and increase the number of bus cycles required to load the data into the chip as shown

in Table 7.5.

In level 5, all inputs and outputs are attached to Pad blocks. A Pad consists of a

Buf4 and a PadIn or PadOut for an input or output respectively; figure 7.19 shows an output pad.

A Buf4 is a cell that does not perform any logic function but does provide buffering of logic

signals. It can be driven at high speed by a minimum-sized logic gate. It is capable of sinking and

@—i from Tap Pad_out out g

fn >+
el

Buf4

PadOut

PadOut_SCMOS

Figure 7.19: Output pad

m sourcing 4 times the amount of current that a

minimum-sized logic gate can sink or source.

> © Therefore it is very good for driving

networks that have a high fan out and large

capacitive loads, such as clock and control

100

signals and is used throughout the design. Padln is used to connect signals from outside the IC to

the on-chip inputs. It provides a bond pad site for a wire bond, a static discharge protection

circuit, and logic signal buffering to drive high-fanout and high-capacitate on-chip networks.

PadOut is used to connect the IC outputs to the off-chip networks. It provides a high power driver

circuit, a static discharge protection circuit, and a bond pad site for the wire bond.

D. Chip Operation

This section provides an overview of the inputs that control the chip and the signal-

flow operation. Also discussed in the concept of scan path testing illustrating the implementation

into the new ASIC design.

Control Signals:
CLK (clock):

LD (load):

HLD (hold):

Delta Phase Inc:

CLK is the master clock for the entire chip and controls every register in the

chip.

LD is a bit to control the behavior of the registers. If LD is high, Shift Right
(SR), Shift Left (SL) and Hold (HLD) have to be low. This setup is the mode
for normal operation. If LD is low, the chip is in a special mode, where HLD

or Scan Path Test controls can be used.

If HD is high, SR, SL and LD have to be low. This bit is used to hold a value
within a register that should not change over a period of clock cycles as long
as HLD is high. The input values to a register will simply be ignored and the
last values before HLD got high are retained. If all control signals (HLD, SR,
SL, and LD) are low at the same time, the register performs a synchronous

clear and the output will be entirely low.

Delta Phase Increment is a control bit for the Phase Rotation Register (Phase
Rot Reg). Since a CHIRP pulse or radar pulse is divided into samples and the
phase should only rotate once for every pulse, the Phase Rotation value has to
be incremented from pulse to pulse. If Delta Phase Inc and LD are high, the

phase increment can “rotate” controlled by the clock. The resulting value will

101

LD Phase Inc:

LD Gain Reg:

Tgt Extent:

be added to the DRFM input data. If Delta Phase Inc and LD Phase Inc are
low, the Phase Rot Reg is in hold modus and the phase increment value, as
input for the Phase Accumulator, is fixed. Before processing a new Radar
pulse, the phase has to rotate once to produce a new incremented phase value,

which is the same for all samples within a pulse.

Load Phase Increment is a control bit, that effects the two registers for the
phase rotation block in order to signal a change for the phase increment value.
If this bit and LD are high, a new phase value gets loaded and the Phase Rot
Reg performs a synchronous clear. If LD Phase Inc is low and LD is high, the
Phase Inc Reg is in hold modus in order to keep the phase increment value
constant over the length of a radar pulse.

The inputs for the gain coefficients and the phase increment values are
bused on a 32-bit bus. There are 4 phase increment values per tapline and 32
values per Supertap, therefore the chip needs to load 128 phase increment
values to be able to process DRFM data. Since the bus has a length of 32-bits,
four bus cycles are needed to load the gain coefficients, controlled by “Load

Phase inc Supertap A-D”.

Load gain Register is a control bit, that effects the behavior of the gain register
in order to signalize the change of gain values within a tapline. To load new
gain values, LD Gain Reg and LD have to be high. If LD Gain Register is low
and LD is high, the gain register is in hold modus.

The inputs for the gain coefficients and the phase increment values are
bused on a 32-bit bus. There are 2 gain coefficients per tapline and 16
coefficients per Supertap. Therefore the chip needs to load 64 gain coefficients
values to be ablé to process DRFM data. Since the bus has a length of 32-bits,
two bus cycles are needed to load the gain coefficients controlled by “Load

Gain Reg Tap 0-15” and “Load Gain Reg Tap 16-31”.

The Target Exteht control bit is used to activate or deactivate taplines,
regarding of the size of the false target. The chip is able to handle a false
target up to 32 cells regarding to the in MATLAB constructed range-Doppler

102

Range Bin Valid:

Valid Result In:

Overflow In:

map. If the desired false target is smaller, less taplines are necessary to build
the false target. In level 5 of the design hierarchy a 5-to32-bit decoder uses a
truth table to adjust the used taplines in dependency of the target size. If a
target needs for example only 12 tapline, the Tgt_Extent for the first 12
taplines are high. The Tgt_Extent for the other taplines are low and the output

values are ignored. Therefore the false target output is available in less time.

A tapline needs four clock cycles to produce a valid output. Range bin Valid
gets high when new values are presented to the tapline. The bit penetrates
through 1-bit register cells to the Valid Result Out pad. If Valid Result Out
gets high, the output out of the tapline is fully processed and the output is
valid.

As long as the 1-bit Pipline Reg 3 doesn’t receive a high for Range Bin
Valid, the register after the Gain Shift block gets cleared for every clock cycle.
A higher tapline can produce valid resdlts, even if a lower one cannot.
Therefore the .lower tapline is not allowed to add garbage data to a valid
output of the higher tapline within the 16-bit adder, so that the input of the

lower tapline to the adder has to be zero.

Valid Result in performs a similar operation as Range Bin Valid. This input
port is connected to the Valid Result Out port of the next higher tapline. If the
next higher tapline produces a valid output that is lead into the lower tapline,
Valid Result In is high and the next lower tapline produces a valid output with
the following clock, although the lower tapline may not produce any valid
data in its Gain Shift block.

Overflow in is an error checking bit from the next higher tapline. If a higher

tapline produces an invalid output due to an overflow in the 16-Bit-Adder, the

entire chip output will become invalid.

103

Scan Path Test:

The Scan Path Test consists of several inputs and outputs and will be

discussed in more detail later on. The related ports are: Scan Path Test Left
Out (S_P_Test_Lout), Scan Path Test Right Out (S_P_Tést__Rout), Scan Path
Test Left In (S_P_Test_Lin), Scan Path Test Right In (S_P_Test_Rin), Shift
Right Data In (SRDi), Shift Left Data In (SLDi), Shift Right (SR), and Shift

Left (SL).

E. Timing Control

During normal mode of operation, there are a few time-constraints to keep in mind

in order to ensure correct results. As shown in Figure 7.20, every new process should start with a

synchronous clear. For a synchronous clear all register controls have to be low to force outputs to

zero until new data are processed. The next six clock cycles are reserved to load the gain

Sync clear Initialize chip

A — ~r

-~
25.0ns 50.0ns 75.0ns 100.0ns 125.0ns

Tapline
A

- CLK

-~ LD

P~ SR/SL

>~ HLD

>~ S_P_TestL/Rin

>~ Target_Extend_in0-4
@~ LD_Gain_Reg_Tap0-15
= LD_Gain_Reg_Tap16-32
@~ LD_Phase_inc_SupentA
= LD _Phase_inc_SupentB
= LD_Phase_inc_SuperntC
- LD_Phase_inc_SupertD
- DRFM_Phase_Data0-4
i~ delta_Phase_inc

> Range_bin_valid

- 32-bit-Bus-values

- Gain_Tap0-15

- Gain_Tap16-31

@~ Phase_inc_DataTap0-7
o Phase_inc_DataTap8-15
= Phase_inc_DataTap16-23
= Phase_inc_DataTap24-31
- Valid_Result_out

=i /Q-outputs

- 2 000000 X000~ 000000 ~~000 = =

EpgEEEpEENENpEpEpEREpN N pEE!
|

)
1)
‘ L
[] Initialize chip
L
=

Input of first data —P>
after initialization

(\ Initialize chip

. I

First valid output after 11 CLK —9 |

Figure 7.20: Initial loading and first DRFM data inputs

104

coefficients and the phase increment values through the 32-bit bus. So far seven clock cycles are
needed before the first DRFM data can be read into the taplines. Within the taplines, the data
treatment takes 4 more clock cycles before the first valid output is present at the first tapline.
Thus 11 clock cycles are required before the first valid output. The “valid result out” pad is an
indicator for valid results. If this pad goes high, the output is valid, providing “Range bin valid”
was set high with the first DRFM sample. After the initialization the DRFM data can be
processed within the taplines. Assuming 62 phase samples for a radar pulse and a use of 32
taplines, 31 clock cycles are required to read the 62™ processed sample out of the 32™ tapline.
This phase is shown with a low DRFM_Phase_Data0-4, a high Valid_result_out, and high I/Q-
outputs. During the time between two radar pulses, new DRFM data cannot be read in.
Nevertheless this time interval can be used to rotate the phase increment, as shown in Figure

7.21.
3 ?UD.lUns ?25.|Uns ?SU]Uns 775.'0ns BUUiDns

- LD

i SR/SL

i HLD

= S_P_TestL/Rin

i Target_Extend_in0-4
= LD_Gain_Reg_Tap0-15 .

i@ LD_Gain_Reg_Tap16-32 } l} Hrange ot g Tty ot TeCessary

i LD_Phase_inc_SupertA

i LD_Phase_inc_SupenB

@@= LD_Phase_inc_SupertC + No load of phase inc values R

i~ LD_Phase_inc_SupertD J : chl et
i@~ DRFM_Phase_Data0-4]

- delta_Phase_inc [~ |_I—_Phase rotation

i Range_bin_valid

= 32-bit-Bus-values

= Gain_Tap0-15

P~ Gain_Tap16-31

i@ Phase_inc_DataTap0-7
i Phase_inc_DataTap8-15
i Phase_inc_DataTap16-23
i Phase_inc_DataTap24-31
= Valid_Result_out

= [/Q-outputs

L Continuous valid output

Figure 7.21: Timing diagram between two radar pulses

105

The process shown between the first two pulses will repeat after every radar pulse. For a regular
false target it should not be necessary to change the gain coefficients or the phase increment
values. If for some reason a change is required before the last radar pulse of a certain set is
processed, the gain coefficients will become effective immediately, whereas a change of the
phase increment values will force the phase increment register to clear first and rotate the phase
after one full radar pulse is processed. Since this is normally not the case there is no need to be

concerned with the gain coefficients and the phase increment values as long as the corresponding

control signals are “low”.

F. Scan Path Testing

The design of a workable system solution for a given problem is only half of the
work. Furthermore one must also be able to test the system to a degree where it can be ensured
that the system is fully functional with a high confidence level. In very small-scale digital
systems, tests can be performed exhaustively, where the system is exercised over its full range of
operating conditions. This method is not an economical or useful approach to verify the

functionality. Therefore other strategies are necessary to perform proper testing.

The scan path methodology is

l_: probably the most widely used technique for

= testing those parts of a integrated circuit that are

%:l)9—) constructed of clocked flip-flops interconnected
Dan
x>

&

by combinational logic. As illustrated in Figure

)o 7.22, the scan path can be implemented into a

simple circuit very easily. When the circuit is put

Figure 7.22: Register cell with scan path. into test mode, it is possible to shift an arbitrary

test pattern into the register. By returning the

* circuit to normal mode for one clock period, the contents of the scan register and primary input

signals act as inputs to the attached combinational circuitry and new values are stored in the by

the logic followed scan path register. If the circuit is then placed into test mode again, it is
possible to shift out the contents of the scan register for comparison with the correct response.

By using test points, one can easily enhance the absorbability and controllability of

a circuit. The scan path register effectively provides such test points, whereas in FPGA design the

106

implementation of Tristate-buffers was necessary. To control the test points in a scan path test

several control signals have to be implemented to adjust the mode of operation. Table 7.6 lists the

signals used for the scan path test in the new DIS design.

Padname Function

SR (Shift Right) Input pad to control function of register. If high, the data within
the register will be shifted to the right with every clock cycle. All
other control signal have to be low (HLD, LD, SL)

SL (Shift Left) Input pad to control function of register. If high, the data within
the register will be shifted to the left with every clock cycle. All
other control signal have to be low (HLD, LD, SR)

SRDi (Shift Right Datain) | Test data input pad from right front end of scan path test

SLDi (Shft Left Data in) Test data input pad from left front end of scan path test

SRDo (Shift Right Data out) | Test data output pad for a right shifted output

SLDo (Shift Left Data out) | Test data output pad for a left shifted output

Table 7.6: Scan Path Test Control Signals

A scan path register is a serial cascade of scan path register cells whose inputs and

outputs are connected to the internal logic of a chip as illustrated in Figure 7.23. During normal

5t

e

operation, the LD signal is asserted and the logic
value at the inputs DO and D1 reach the outputs

HLD LD SR SL

SRDi 0
_Reg Cellei—

bt sLoi—
cx

l

8 QO and Q1 after one clock cycle. When the signal

SL is asserted during test, the logic value at SLDi

s;:l;n zl.osn =1 arrives at Q1 one clock cycle later and continues
, Reg Celﬁ B ja propagating to QO with the following clock cycle.
cf‘ , When the signal SR is asserted during test, the

Figure 7.23: 2-bit register.

logic value at SRDi arrives at QO one clock cycle
later and continues propagating to Q1 with the

following clock cycle. If the chip is still in test

107

mode, the values keep propagating in the forced direction through all the connected registers in

the scan path.

In summary, the scan path test can be used for two valuable testing functions. First,
test data can be placed in every register of the chip to examine the resulting outputs in normal
operation mode. Second, after normal operation all stored data in the registers can be read out by
shifting to the left or to the right and can be compared with correct results. The scan path test
implementation in a tapline is shown in Figure 7.24 below. The path between the taplines within
a Supertap and beyond is simply realized by a serial connection of inputs and outputs. The scan
chain connects tapline 0 to 31 in a long row of registers. To give an overview about the number
of bits penetrating through the scan chain imagine the following calculation:

There are 90 bits used in the registers of a tapline and 32 tapline in the chip. This will result in

90 * 32 =2.880 values to read out of the entire scan path.

108

Left Out

Right In

7rIe

1711 HH
g 9 a B :g Q
:E F; jaf ﬁ Jorsssaseesssiienitntitiiiiinniieianney
o—g é a‘:: ----- ! ::g mi §re
i . 5 .
s % s P
s :
§ 5-Bi J/ der 5-Bit +_Ader
: 1119

-Bit Reg

o—
o—azS
o—for

]

g gt D Lo s axol—a

—mt
o =~
—d—}

T
= Gps;table-outpyt

T

’ i
1 GaiR Phift i 5 5 G Pt 5 5
HHH HI L
oI5 —ry oL,
% 11-BitReg I°Ji di 11-BitReg [T Rt
s -Bi : &l BitReg °["e*": R S o
o3 L H for I-Block 3 : g,-_? 3o
2sosbaproncs : 35wb8835058 . e
.tHHHHH : I W ' %
2929999099992 ¢99TY? 2IPPTTPTIIIPTILLAYY 29999999299 r??P?PPP? $99929PPTIPLILILYE 5
¢ 333335z22z232322:23V233ia28Rc8832453: YRR EEEEEEEEEE] 2iZis28s2ss8a22da M4
o\ o 23 a JOBJ, 4, Adder 7/ o . .. JOBit Adder 7
R EEEEERREEX] §db006860688688834°% E
ISAAARAARAREAARA 190097290909 799°¢
,_Eaiéséésusxaaaana éaéi'ééisusaaaaass
i] . : E
il 16-Bit Reg L 3 16-Bit Reg i
3385358585883 58558 . 3233338
llAlLJJLL$‘L§ fooed

*Right Out

&eft In

Figure 7.24: Scan path test in a tapline.

109

G. Simulation in T-Spice

Two goals are established by doing the simulation in T-Spice. First and foremost,
the correct logical implementation needs to be verified, which includes the check of each
connection between elements (wire connections). The second goal is to prove the proper
implementation of the developed algorithm within the circuit. This section describes how the
simulation is done in T-Spice. The verification of the circuit functionality is achieved by
simulating a smaller part of the entire circuit design and comparing the results to the Matlab
simulation.

S-Edit supports a direct export of a schematic layout into a T-Spice readable SPICE
format. The exported SPICE file contains only circuit information, but does not contain test-
commands or test-vectors. Therefore several lines of code have to be added to create a valid
simulation file that can be used in T-Spice. To illustrate the test concept in T-Spice a 2-bit
register is used as example. Table 7.7 contains parts of the 2-bit-Register SPICE file that are used

for simulation.

110

T-Spice Code

Meaning

Vdd Vdd Gnd DC 5

Defines the voltages between OV (Ground)
and +5V DC

dnclude "D:\Chris\Thesis\schematics\testfiles\
Register\2Bit\input_table2Reg.md"

Reads the file input_table2Reg.md, which is
an text file containing all input used during

simulation

.options prtdel=80n

The option command customizes the
simulation. PRTDEL sets the reading for

output pads to exact every 80nsec

.tran 10n 800n start=70n

Performs a transient analysis with a
maximum step size for calculations of
10nsec, a simulation stop time of 800nsec

and an offset for the first output reading of

| 70nesc

.print tran "D:\Chris\Thesis\Schematics\testfiles\
Register\2Bit\Inputs.out" V(CLK) V(SL) V(SR)
V(SLDi) V(SRDi) V(LD) V(HLD) V(D0) V(D1)

.print tran "D:\Chris\Thesis\Schematics\testfiles\
Register\2Bit\Outputs.out” V(QO0) V(Q1)

The print tran command is used to define the
monitored output pads and the file in which
the records are saved. The file “inputs.out”
records all control signals and the inputs of
the register, whereas the file “Outputs.out

records only the outputs of the register.

.param 1=0.05u

Sets the wavelength to 0.05um

Ainclude "D:\Chris\Thesis\ModelParammod.md"

Includes the transistor parameters for the
target process (MOSIS — HP 0.5um) used

for the simulation.

Table 7.7: T-Spice Simulation Commands

T-Spice is not a logical circuit simulator, but can perform various analog

simulations like DC-analysis and frequency sweeps. Nevertheless T-Spice can make use of the

“bit”-command that offers to push binary inputs into the input pads of the circuit representation.

The voltages are OV for a logical zero and 5V for a logical one. By defining the inputs as voltage

sources, T-Spice analyses the input vectors, calculates a DC operating point, and calculates the

111

defined output pads in form of voltages. Below is an example of the input vectors for the 2-bit-

Register simulation.

VinD0 DO Gnd bit ({0010111111} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinD1 D1 Gnd bit ({0001011111} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinSRDi SRDi Gnd bit ({0000000000} on=5.0 off=0.0 pw=80n ﬁ:O.ln ft=0.1n
VinSLDi SLDi Gnd bit ({0000000011} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinHLD HLD Gnd bit ({0000100000} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinLD LD Gnd bit ({0111010000} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinSR SR Gnd bit ({0000001100} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinSL SL Gnd bit ({0000000011} on=5.0 off=0.0 pw=80n rt=0.1n ft=0.1n
VinCLK CLK Gnd bit ({01} on=5.0 off=0.0 pw=40n rt=0.1n ft=0.1n

The input vectors are defined by a name for the voltage source (input pad) against
~ ground, a bit pattern used as inputs for the voltages sources, the definition of zero and one, a
pulse width (pw) of the signal, a rise time (rt), and a fall time (ft) in nano seconds. The registers
are constructed for the use of a positive edge triggered clock. This means that all signals have to
be present before the clock changes from low to high. A change of a value after the clock goes
high cannot be processed properly. As an illustrated example in Figure 7.25, the clock starts with
a “low” of 40ns and changes to “high” afterwards. Therefore, the entire clock cycle is 80ns,

which corresponds to the pulse width of the input signals.

LD 0 1
A A 1,
5V=1f— N ~
o0V=0
.
Clock
5v=1
ovV=0
40nsec 80nsec 120nsec 160nsec

Figure 7.25: Signal-clock concept

112

The above-mentioned input values are used to test the behavior of the 2-bit-Register
under normal and test mode conditions. Table 7.8 illustrates the basic test concept and the

relation between the control signals.

DO | SRDi | SLDi | HLD [LD | SR | SL | CLK | Q0 | Remark
0/1 0 0 0] 0| 0-1 0 | Synchronous Clear
0/1 0 1 0 0 | 0—1 | 0/1 | Data (D0) - normal operation
0/1 1 0 | 0| O} 0-1 | 01 |Previousdata, “do nothing”
0/1 0 0 1 | O | 01 | 0/1 |Rightdata (SRDi)
0/1 0 00 1 | 01 | 0/1 | LeftData (SLDi)

Table 7.8: Test Concept of the 2-Bit-Register

The test mode signals ére in direct relationship to each other, because only one
input of SR, SL, HLD, and LD can be high at a time to perform a legal operation in test mode.

During the transient simulation, T-Spice uses the input vectors to determine the
voltage values for the outputs. The determined values are saved in the predefined files and the
transient analysis results are automatically stored in a separate file. These transient results can be
used to go back to the circuit in S-Edit and “probe” in the schematic layout. The probing will call
W-Edit automatically and create a graphical output of the voltage in time for the probed node.
The user defined output files, which contains the simulation results holds exact voltage values in

the region between OV and 5V, as shown below in Table 7.9.

113

Time (sec) v(QO0) (Volts) . V(Q1) (Volts)
7.0000E-08 1.2408E-07 1.2414E-07
1.5000E-07 1.4298E-07 1.4302E-07
2.3000E-07 5.0000E+00 6.3223E-08
3.1000E-07 8.6684E-08 5.0000E+00
3.9000E-07 1.9326E-07 5.0000E+00
4.7000E-07 5.0000E+00 5.0000E+00
5.5000E-07 2.8934E-07 5.0000E+00
6.3000E-07 1.2812E-07 -2.4128E-07
7.1000E-07 4.3775E-08 5.0000E+00
7.9000E-07 5.0000E+00 5.0000E+00
8.0000E-07 5.0000E+00 5.0000E+00

Table 7.9: Output Table for the Transient Analysis of a 2-bit-Register

The analog output values distinguish between one and zero. The output values are analog
voltages and the results have to be sent through a hard limiter to get a binary output table in order
to compare the results with the correct binary output pattern produced by Matlab.

In very small-scale digital systems, tests can be performed exhaustively, where the
system is exercised over its full range of operating conditions. This kind of test was used to
simulate the elements of level 1 and 2 of the design hierarchy, as exercised for the 2-bit-Register
test case. However, for higher-level elements, the input values were chosen more carefully, to
- simulate only critical cases. By increasing the number of sub circuits, the simulation time and the
amount of required computing power increases in an almost exponential manner. For a Supertap

simulation (level 4), a PC with Pentium III processor and 768MB RAM could not satisfy the need

for resources by the T-Spice simulation.

114

Two Tap Simulation

2 Tapline Test Setup

i

Bt)

Stweidid

Due to the limitations in available computer resources, it was decided to prove the

algorithm with a two tapline circuit, as shown in Figure 7.26. The simulation takes approximately

. s = . =
:,} i if }}2} DR IR B N i S ;,Z i H }}}: PR 1D I I
an ! Gan - meme 1D [T on ! Gan | me T
B -] - 13— o
A B =
- - -
- - e
el o
3 - S - S
. - - p—— . o
= Tap Line 0 b I Tap Line 1 =
o I -
g -
eeDea] - B Dxa -
g e - o o -
1 fae Yomet T we b—o=] P T -
] B e e 8 B e
o U S o o _—
. o N v hios
ik] - Gingit: =
- - -
g " R = - B
- 4= -
sz el e o .
- = s
- o
- - el
= R o e ot
3iid [T S 212 —
3314 13112
M] 23 -

Figure 7.26: 2-Tapline-test circuit

115

18 hours and provides the results shown below. The Matlab programs discussed earlier were used
to create DRFM phase data for 10 radar pulses with 15 samples each. These data were inputs for
the simulation in T-Spice for the 2-tapline-circuit representation. The simulation results were
used as inputs to the ‘“hard_limiter2Taps.m” Matlab program to prepare the data for funher
treatment and bring them into a binary form. The resulting data were translated into integers and

plotted in Matlab. The correct values were obtained from a Matlab simulation. The following

figures and tables give an overview about the data processing. The Matlab created DRFM phase
data are listed in the simulation input file and were used as input vectors for the simulation in T-
Spice. Matlab used the same input vectors. The simulation vector table contains approximately
160 input vectors (150 DRFM phase data plus control signals) for every input pad shown in
Figure 7.26 and is only listed in the Appendix.

The range-Doppler-amplitude map entry program was modified for the 2-tapline
test case in so that only 10 radar pulses with 15 samples per pulse could be used in order to

decrease the simulation time in the hardware. For this setup, 150 DRFM phase data samples have

- . ‘9‘ v '7; ' Range—Dbppler-Amplitude Map Entry Program

Hangc‘CeII 5 2:

8
DopplerCell El§
1 : ;‘ Afnplitu‘(:.le' 3 »
.Eﬂs ‘ Dopplershit 4 |
. ‘ -
8.

CLEAR | save]

) H @ T’ a s 10 un 12 1N u 1S
-Range Cell

Figure 7.27: Range-Doppler-Amplitude Map Entry Program

been produced in Matlab. Since 2 taplines were used, only two cells in the range-Doppler map are
defined for the false target generation. The setup for the amplitude (gain coefficients in hardware)

and the Doppler Shift (phase increment values in hardware) are summarized in Table 7.10.

Target Cell Range Cell | Doppler Cell Amplitude | Doppler Shift Remark
1 1 1 2 2 Tap 0 — 1% Tap
2 2 1 3 4 Tap 1 - 2" Tap

Table 7.10: Matiab Inputs in the Range Doppler Map

116

The rest of the simulation in Matlab follows the same path as described in Chapter 4. The values
in Table 7.10 can be translated into T-Spice test vectors and specify the input parameters to the

taplines, as listed in Table 7.11.

tapline Range Cell | Doppler Cell Gain Phase Remark
coefficients Increment
0 - - 01 0010 Binary inputs
1 - - 10 0100 Binary inputs

Table 7.11: T-Spice Inputs in the Range-Doppler Map

Table 7.12 shows only a small part of the input vectors used for this test case, but they serve to

explain the interaction between input control signals, input vectors and the output values.

Input Pad | Sync Radar Pulse 1 Radar Pulse 2 Radar Pulse 3
Name Clear
Phase0 0 001101010000110 | 0 |{001101010000110 | O [001101010000110
Phasel 0 000100000011111 | 0 [000100000011111 | O | 000100000011111
Phase2 0 001110100100110 [0 |001110100100110 |0 | 001110100100110
Phase3 0 000101010011111 |0 [000101010011111 | O | 000101010011111
Phase4 0 000001110100010 |0 [000001110100010 | O | 000001110100010
Delta Phase | 0 000000000000000 | 1 | 000000000000000 |1 | 000000000000000
inc
LD Phase |0 100000000000000 | 0 | 000000000000000 | O | 000000000000000
inc
LD Gain 0 100000000000000 | 0 [100000000000000 [O [100000000000000
Range bin 111111111111111 | O | 111111111111111 | O |111111111111111
valid '

Table 7.12: Extract of input Vectors for the 2-tapline-Test

Note that the Phase 0-4 represents the 5-bit DRFM phase data input to both taplines. Also, the
first input performs a synchronous clear to zero all registers. A radar pulse consists of 15 samples,
where each sample is read in with every clock cycle. Note also that the gap between the radar
* pulses is manually set and not part of the DRFM data.

Three radar pulses are shown with 15 DRFM phase data samples. Between the radar
pulses are gaps to load zeros for the “range bin valid” control signal and to increment the
“rotating phase” by one rotation The gap is necessary to achieve the delay in the 16-bit adder
chain between the taplines. Recall, that when the last sample is processed through the taplines the

output is the sum of the last output in tapline 0 added with the last output of tapline 1. Therefore

117

one more clock cycle is required to read out the last final output, which is the last processed pulse

in tapline 1 added to a zero from tapline 0. This produces the 16™ output value for only 15 input

samples. The binary word of zero in tapline 0 is achieved by setting the “range bin valid” control

bit to low for one clock cycle to clear the Pipeline Reg 3 in tapline O and tapline 1. After the last
processed phase sample in tapline 1 reaches the final output through tapline 0, the first fully
processed sample from the next radar pulse is already present for output. Due to the low “range

bin valid” for one clock cycle, the Pipeline Reg 3 were cleared (in both taplines), so that the

output of tapline 1 was zero. Therefore the final output is just the sum of the output of tapline 0

and a zero valued binary word from tapline 1.

CLK [Valid Result I values Q values Pulse# | Sample#
1 0 0000000000000000 0000000000000000 Sync Clear
2 0 0000000000000000 0000000000000000
3 0 0000000000000000 0000000000000000
4 0 0000000000000000 0000000000000000
5 1 0000000011111110 0000000000000000 1 1
6 1 0000001011111010 0000000000000000 1 2
7 1 0000001010000010 0000000011010110 1 3
8 1 0000000000010000 0000000111000100 1 4
9 1 1111111010110110 0000000011101000 1 5
10 1 0000000110110100 0000000010000010 1 6
11 1 0000000000010110 1111110101011100 1 7
12 1 1111111100100100 1111110110000010 1 8
13 1 0000000110101110 1111111000100100 1 9
14 1 0000000101100010 1111111100111000 1 10
15 1 1111111001011110 1111111101010100 1 11
16 1 1111111010110110 0000001010101100 1 12
17 1 1111111000101000 0000000111100000 1 13
18 1 1111111100000110 00000000001 10000 1 14
19 1 0000000110001110 0000000011100100 1 15
20 1 1111111100100100 0000000111001000 1 15
21 1 0000000011101000 0000000001100100 2 1
22 1 0000001001000100 0000000111010100 2 2

Table 7.13: T-Spice Simulation Outputs (hard limited)

Table 7.13 shows only the first 22 clock cycles out of 171. The first four clocks are

used to process the first sample within the taplinés. Bus cycles are not needed for a 2-tapline-test,
but have to be included for a 32-tapline-test. The I and Q values are in form of: most significant

bit > least significant bit. Table 7.13 lists the output I and Q output values corresponding to input

DRFM phase data. The first 5 clock cycles are needed to process the first input, where the first
output is a synchronous clear. Clock 19 and 20 are the last outputs from radar pulse 1. Due to the
delay just described, sample 15 will produce two outputs. The phase outputs are 16-bit 2-
complemet words that are translated into a decimal representation to be processed in Matlab.

To extend the 2-tapline-test case to x-number of taplines, it is requires to set the
“range bin valid” control bit to at least x-1 low inputs (0’s) between two radar pulses and after the
last radar pulse in order to get the correct delay in the adder chain. Furthermore the delay

produces outputs in the range of
number of DRFM samples per pulse + (x—1) = number of outputs. (7.5)

After transforming the T-Spice simulation results into a decimal representation, they can be
processed in Matlab. Figure 7.28 shows two-dimensional contour plots for the Matlab and the T-
Spice simulation results in comparison. By visual inspection there is no obvious difference in the

preliminary simulation results.

F : » IW ludll\dooppltm ‘MR&D?W(BII‘“MMQQWTNC‘(MN‘ .LAB)
o ! ! ! ! !
L N e I e N T T N P e L —
% ' ' 1} 1 l
; ' 1 1 1 Ll
e = e m m mrm mrr rrcal e, rr cr cc e s v m e — ... -—-—-—-—- D e R I e o = e e - - ————- R o
‘: 1 ' & 1 1
S S U, SR SO Lo
i ' ']) 1
'] 1 L} 1
g i ---------------- [t S L il qemssems e m .- Ul S ittt [kl §
s o o L L P
¥ r H : ! v
L 1 4 1 ' 1
BT promm e S . Trmmmmemmemeee o T
Y T CEEETEETTE T e AT e -
h U ' 1 1 . 1
e A Ut PR R b e (-
: : : : :
""""" IIM"atlab“
]
20 30 40 50 00
Down Range Cells
b. Ampikude and Doppler Modulated Rd-Dp Mep (from HARDWARE output) j
‘ ! ! ! ! !
N+ 7 S U N Cacccacacccacacaan S B I L | Map—
' : : : : :
L - S e S brvmmmnncanenae == demcmcmr e —--oe o Moo oo o @wmtomeewwmm [
X]] [l [} [
b . 1 ' 1 l
S5] S A b e e mna L e e eas L]
h 1 1 1 1)
; g O SOy SO el L Lo
. . '] 1])
3 1 1 U) 1)
i o FomoToToee R HER s £
) T N U LN U U SO U e cceccan Lo
: ; . : . ;
e ST N b RSy S b [
l [[} L})
S = oo omoceeeeeee b feeenmmmeeeee oo L
| , | Hardwaré |
20 30 40 50 ‘ 60
Down Range Cells . .

Figure 7.28: 2D plot of simulation results

119

2. Ampitude/Doppler Modulated Ra-Dp Map (Bt-True, moduiated IMATLAB)

Cross Range Celis ‘ Down Range Cals

Figure 5.29: 3D plot of simulation results and comparison

. Anpituda’Doppier Moduiated Rd-Op Mep (HARDWARE output)

“Sidelobés due (G ISAR

Down Range Cels

Figure 7.30: Hardware results
120

Figure 7.29 shows the three-dimensional representation of the results and a
comparison between the T-Spice and Matlab simulation. The difference is calculated by
subtracting the Matlab simulation output data from the T-Spice simulation output data. Since the
difference is exactly zero, the proof is complete. The Matlab simulation and the T-Spice
simulation process the data in the same way and therefore represent the same algorithm.

To extend the testing for a Supertap and the top-level design, other tools are
required. GateSim is part of the Tanner Tool Environment and is a logic simulator in MS-DOS.
S-Edit can create a file type readable by Nettran, which can be imported into GateSim. Until now,

this has not been investigated but is on focus for future studies.

References

[1] Donald R. Wehner, “High Resolution Radar”, 2" Edition.

[2] R.M. Nuthalapathi, “High Resolution Reconstruction of ISAR Images”, IEEE Transactions
on Aerospace and Electronic Systems”, Vol. 28, No. 2, p.462ff, April, 1992.

[3] P.E. Pace, Surratt, R. E., Yeo, S.-Y., “Signal Synthesizer and Method Therefor,” Patent
File Attorney Docket No. 79,429, Sept. 1, 1999.

[4] T.T. Vu,etal., “A GaAs Phase Digitizing and Summing System for Microwave Signal
Storage,” IEEE Journal of Solid State Circuits, Vol. 24, p. 104, February, 1989.

[S] Mathwork Inc., Homepage for MATLAD, http://www.mathworks.com.

[6] Yeo, Siew-Yam, “A Digital Image Synthesizer for ISAR Counter-Targeting,” Master’s
Thesis, Naval Postgraduate School, Monterey, September 1998.

[71 MAX+PLUS I Getting Started version 8.1 (5.4 MB).
[8]1 Altera Max+Plus II Online-manual.

[9] Altera Homepage, (http://www.altera.com/).

[10] Visual Software Solutions Inc. Homepage, http://www.statecad.com.

121

[11] Visual Software Inc., Statecad 5.0 and Statebench printed manuals.

[12] SimGen Online manual.

[13] Mentor Graphics Homepage, http://www.mentor.com.

[14] AMI FPGA/ASIC Design Techniques Seminar, April 16, 1999.

[15] Tanner Tools, printed manuals for LVS 8.02, Nettran, general instructions for Tanner

Tools.

122

Table of Abbreviation

ADC
AHDL
AMI
ASCM
ASIC
BIT
CMOS
CPI
CPLD
DBS
DIS
DRFM
DSP
EA
EAB
EW

FLEX
FPGA

PC
PLD

Analog to Digital Conversion

Altera Hardware Description Language
American Microsystems Inc.

Anti Ship Cruise Missile
Application-Specific Integrated Circuit
Built In Test

Complementary Metal Oxide Semiconductor
Coherent Processing Interval/Synthetic Aperture Frametime
Complex Programmable Logic Device
Doppler Beam Sharpening

Digital Image Synthesizer

Digital Radio Frequency Memory
Digital Signal Processing

Electronic Attack

Embedded Array Block

Electronic Warfare

Fast Fourier Transform

Flexible Logic Element Matrix

Field Programmable Gate Array
Graphical User Interface

Hardware Description Language

High Resolution Radar

Inverse Fast Fourier Transform

Inverse Synthetic Aperture Radar

Line Of Sight

Library of Parameterized Module
Look-Up Table

Naval Research Laboratory

Personal Computer

Programmable Logic Device

123

PRI Pulse Repetition Interval

RCS Radar Cross Section

RF Radio Frequency

RRC Radar Resolution Cell

SAR Synthetic Aperture Radar

TDL Tapped Delay Line

VHDL Very High Speed Integrated Circuit Hardware Description
Language

124

Appendix A - MATLAB Codes

Version 1

runDISvl.m

R R R R R R R R R R R TR R TR PR LR P T PR TR PR R R TR TR TR TS TR T

% runDISvl.m

% This script file will help you to run the Digital Image Syntesizer (DIS)

% This is a modified version that is able to handle different target extents
% (that is, how many taps the user would like to use that will represent the
% radial length of the target, seen from the ISAR)

% Created by:

% MAJ Stig Ekestorm, Sep -99

% Naval Postgraduate School

R Rt R T R R R L L e e R R R TR R R T TR T)

%$set path ‘
%cd c:\temasek\denise\thesis\final_design\vbfiles

$clear the workspace
clear

%run the graphical user interface to specify target parameters
guivl

disp('Enter the values in the Grapical User Interface’)
disp(’'Press any key to continue’)

pause

$pre-process signal parameters, simulate ISAR
mathostvl

disp(’'Press any key to continue’)

pause ‘

%simulate the DIS in Matlab
simhwchkvl

disp(’'Press any key to continue’)
pause

%see to that data from hardware are available

disp(‘This should be the latest time to see to that data from hardware’)
disp(’are available in the two files imagei.txt and imageq.txt’)

disp(’ *)

disp(’When this is taken care of, return to the MATLAB Command Window’)
disp(’and press any key to continue’)

pause

$plot results for visual comparison
plothwvl

$end of file

guivl.m

function [dat] = guivl(action);

oP

et inputs from screen
SY YEO, 30 Jan 98
Modified by Stig Ekestorm, Aug -99

o o oo
[pNte]

do o°
o@

global hf

global hl

global h2

global data
global loc
global patchsize
global txtloc
global count
global ph

if nargin<l,
action=’'start’;

end;

if strcmp(action, 'start’),
% initialize the figure

set (0, 'DefaultAxesFontSize’,6);

hf = figure(l); clf
set (hf, ‘NextPlot’, ‘add’);

set(hf, ...
‘NumberTitle’, ‘off’,

'Name’, 'Naval PostGraduate School’, ...

'backingstore’, ‘off’, ...
'Units’, 'normalized’);

et R R R R Rt R L R R R R R R R R R R L AR L R LR AL R LR L E

e
R R R R R e e R A R R R LR L L R A LR LR L R AR L LR R Lt L 1

rg_pts = 62;

dp_pts = 64;

data = []; 1loc = [];

count = 0;

ph = [];

hl = axes(’Position’,[0 0 1 1],‘'Visible’,’off’);
h2 = axes(’Position’,[0.1 0.1 0.6 0.81);

set (hf, 'currentaxes’,h2);

l:rg_pts;
0: (dp_pts-1);

Xa
ya

xtick = 0:1:rg_pts;
set (gca, 'XTickMode’, ‘manual’) ;

set (gca,
set (gca,
set (gca,
set (gca,
set(gca,

. set (gca,
set (gca,
set (gca,

set (gca,
set (gca,
set (gca,

xh
vh

'XLimMode’, ‘manual’) ;
'XLim’, [1 rg_pts]);

'XTick'’,xtick);
'XGrid', ‘on’);

'GridLineStyle’, '-');

'YTickMode’, ‘'manual’);
'YLimMode'’, ‘manual’);
'YLim’, [0 dp_pts-11);
ytick = 0:1:dp_pts;

'YTick'’,ytick);
'YGrid’,‘on’);

'GridLineStyle’,"'-');

xlabel ('Range Cell’);

vlabel ('Doppler’); set(vh,’FontSize’,8);

set (xh, 'FontSize’,8); clear xh

clear vh

ht = title(’'Range-Doppler-Amplitude Map Entry Program’);

set (ht, 'FontSize’,10, ‘Coloxr’, [0 0 1]);

'Style’, "text’,
‘FontSize’,6,...
’String’, 'Range Cell’,

'BackgroundColor’, [.9
‘Position’, [{0.72 0.75 0.15 0.047,

,'aText’) ;

‘Style’, 'text’,
‘FontSize’,6,...
‘String’, ‘Doppler Cell’,

a =
ITagl
b =
lTagI
c =

'BackgroundColor’, [.9 .
‘Position’, [0.72 0.65 0.15 0.04],

, 'bText’);

'Style’, 'text’,
'FontSize’,6, ..

‘String’,’'Amplitude’,

ITagl

,'cText’);

.9

.9

.9

uicontrol (‘Units’, ‘normalized’,
'BackgroundColor’, [.9
‘Position’,[0.72 0.80 0.15 0.04],

.91,

uicontrol (/'Units’, ‘'normalized’,

.91,

uicontrol (’'Units’, 'normalized’,

.91,

cll = uicontrol(’'Units’, ‘normalized’,

'BackgroundColor’, [.9
‘Position’, [0.72 0.60 0.15 0.04],
'style’, ’slider’, 'min’,0, ‘max’,4, ...

.9

.91,

rSliderStep’,[0.25 0.51,...

'Callback’, ‘guivl(’ 'updatel’’) ") ;

d = uicontrol(’Units’, 'normalized’,

'BackgroundColor’, [.9
‘Position’, [0.72 0.50

'Style’, 'text’,
'FontSize’,6,...
'String’, 'Doppler shift’);

.9

.91,

.15 0.04],

dll = uicontrol(’Units’, ‘normalized’,
’'BackgroundColoxr’,[.9 .9 .97,
‘Position’, [0.72 0.45 0.15 0.04],
'Style’,‘slider’, 'Min’,-10, ‘Max’,10, ...
'SlidexrStep’,[0.05 0.1],...
‘Callback’, 'guivl(’ ‘updatel’”)’);

al = uicontrol(’Units’, ‘'normalized’,
'BackgroundColor’,[1 1 1],
'‘Position’, [0.9 0.80 0.05 0.04],
‘Style’, "text’, ...
'FontSize’,6,...
'String’,’’, ...
'Tag’,’alText’);

set (gcf, ‘currentaxes’, hl);

bl = uicontrol ('Units’, 'normalized’,
'BackgroundColor’, [1 1 1],
‘Position’,[0.9 0.75 0.05 0.041,
‘Style’, "text’,
'FontSize’,6, ...
'String’,’’, ...
'Tag’, 'a2Text2’);

set (gcf, 'currentaxes’,hl);

cl = uicontrol(’Units’, 'normalized’,
‘BackgroundColor’,[1 1 1], ...
'Position’,[0.9 0.65 0.05 0.04],
‘Style’, "text’,
‘FontSize’,6, ...
‘Callback’, 'guivl(’'update’’) ", ...
'String’,’’);

dl = uicontrol(’'Units’,’'normalized’,
'BackgroundColor’,[1 1 1],
'Position’,[0.9 0.50 0.05 0.04],
'Style’, "text’,

‘FontSize’,6,...
'‘Callback’, "guivl (' ‘update’’)’, ...
'String’, ')

gl = uicontrol(’Units’, ‘normalized’,
’BackgroundColor’, 'Yellow’,
‘Position’, [0.9 0.10 0.05 0.04],
‘Style’, ‘pushbutton’,
‘FontSize’,8, ...
’'String’, 'SAVE’,
’Callback’, ‘guivl ('’ 'savequit’’)’);

g2 = uicontrol(’Units’, ‘normalized’,
‘BackgroundColor’, 'Yellow’,
‘Position’,[0.78 0.1 0.1 0.047,
‘Style’, ‘pushbutton’, ...
'FontSize’,8, ...
‘String’, ‘CLEAR’, .
‘Callback’, ‘guivl(’‘start’’)’);

txtloc = [a al b bl ¢ cl ¢11 4 41 411];
% Assign action when mouse button is pressed
set (h2, 'ButtonDownFcn’, ‘guivl(’‘down’’)’);

elseif strcmp(action, 'down’),
% Obtain coordinates of mouse click location in axes units

set (hf, ‘currentaxes’,h2);
pt=get (h2, 'currentpoint’);

x=pt(l,1); xf = floor(x);
y=pt(1l,2); yf = floor(y);
[r,c] = size(data);

set (txtloc(7), 'Value’,0);
set (txtloc(9), ‘'Value’,0);

tmp = [x y 1 0];

loc [loc tmp];

tmp = [xf yf 1 0];

data = [data;tmp];

[r,c] = size(data);

YpOos [yE vE+1 yv£+1 v£];
Xpos [xf xf xf+1 x£f+1];

n

count = count + 1;
%$disp (count) ;

txt = [‘Tag’,num2str (count)];
ptr = patch(xpos,ypos,[1 1 11*0.9);
$disp (ptr);

set (ptr, 'ButtonDownFcn’, [
‘guivl ('’ ‘update’‘)’]);

set {ptr, 'Tag’, txt);

set (ptr, ‘UserData’, [xf v£ 1 0]);

ph = ptr;

set (txtloc(2), ’'String’,xf);

set (txtloc(4), ‘String’,yf);

set (txtloc(6), ‘String’,1);

set (txtloc(9), 'String’,0);

elseif strcmp(action, ‘update’},
% Determine the patch that is selected
ph = gcbo;
%set (ph, ‘Selected’, ‘on’);

% Retrieve the values for that patch and display it
% txtloc = [a al b bl ¢ ¢l ¢c1l 4 41 d411];

% txtloc 2: Range cell

% txtloc 4: Doppler cell

% txtloc 6: Amplitude txtloc 7: Slider bar

% txtloc 9: Doppler offset txtloc 9: Slider bar

ud = get(ph, ‘UserData’);

set (txtloc(2), 'String’,ud(1));
set (txtloc(4),’'String’,ud(2));
set (txtloc(6), 'String’,ud(3));
set (txtloc(9), 'String’,ud(4));
set (txtloc(7), ‘Value’,ud(3));
set (txtloc(10), 'Value’,ud(4));

elseif strcmp(action, 'updatel’),
if (~isempty(ph))
phl = gcbo;
if ((phl == txtloc(7)) | (phl == txtloc(10)))
ud = get(ph, 'UserData’) ;
xf = ud(1l); vi = ud(2);
ypos = [yf v+l yvE+1 yf];
xpos = [xf xf xf+1 xf+1];
set (ph, 'Selected’, "off’);
% Update the amplitude/doppler values
if (phl == txtloc(7))
tmpl get(txtloc(7),'Value’);
tmpl = round(tmpl)
set (txtloc(6), 'String’, tmpl);
set (txtloc(7), 'Value’, tmpl);
if (tmpl < 1),
set (txtloc(7), 'Value’,1);
set (txtloc(6),'String’,’1’);
tmpl = 1;
end
col = [1 1 11*(1-tmpl/10);
set (ph, 'FaceColor’,col);
set (ph, ‘UserData’, [ud(l) ud(2) tmpl ud(4)1);
end
if (phl == txtloc(10))
tmp2 = round(get (txtloc(10), 'Value’));
set (txtloc(9),’'String’, tmp2);
set (txtloc(10), 'Value’, tmp2) ;
set (ph, 'UserData’, [ud(1l) ud(2) ud(3) tmp2]);
end
$disp('HHHE') ;
%$disp (get (ph, 'Tag’))
%disp (get (ph, 'UserData’))
end
end

elseif strcmp(action, 'savequit’),
dat = [];
for i = l:count
tt = findobj(’'Tag’, [’'Tag’ num2str(i)]);
tmp = get(tt, ‘UserData’)
dat = [dat;tmp];

fprintf(‘count = %4, Tag = %s ',count,get(tt,’Tag’));
disp(tmp) ;
end
save -ascii sigparl dat
close gcbf
end

mathostvl.m

A AT DD I P PR PP P PR R R R T L e R T R R R e R T R R R R R R AR R A L
gmathostvl.m

%

Modified version of mathostvO.m

Modified by Stig Ekestorm, Aug -99

mathostv0.m Generate pri_dp map and range-doppler map
- generates the files for input to hardware
-- file para.txt contains:
line 1: number of range cells
line 2: number of pulse in a batch (equals to dp_pts in this program)
line 3: extent of target in cells (n: integer); number of taps in delay
lso equals n (pipeline design)
line 4: gainl, gain2, ..., gain n (integer)
line 4+n+l1: phi0 (pulse 1),
line 4+n+2: phil (pulse 1),
line 4+n+targetExtent: phi-targetExtent (pulse 1),
line 4+n+targetExtent+1l: phi0 (pulse 2),
line 4+n+targetExtent+2: phil (pulse 2),
line 4+n+2*targetExtent: phi-targetExtent (pulse 2),

d° o d@ o° oP

0P dP o° o

line 4+n+dp_pts*targetExtent: phi-targetExtent (pulse dp_pts)

-- file raw.txt contains the instantaneous phases of simulated DFRM data
quantized to 45deg step):

line 1: pulse 1 (integer)

line 2: pulse 2

line dp_pts: pulse dp_pts

9 Jul 98

SY Yeo

P L L T P L R T L R R R R R R R R R R R R et R AR A AR LR E A

0P 0° 0P OP OP d° —~ O° O° O° O d° OP I° O° O° d° o P

clear
set (0, 'defaultAxesFontSize’, 8);

noplot =>O;
Ncontours = 20;

% Parameters

bw = 100e6; $bandwidth of the chirp pulse
pwc = 1/(1.25*bw); $compressed pulse width

pw =0.5e-6; $transmitted pulse width

prf = 2e3; %PRF

pri = 1/prf; $PRI

mu = 2*pi*bw/pw; %

fs = 1.25*bw; $sampling frequency

Ts = 1/fs; $sampling period

snr = 0; % SNR

% set-up grid .
% x-axis(rg), '‘v-axis(dp)

rg_pts = 200; %# of points on x-axis (range
cells) .

dp_pts = 64; %# of points on y-axis (doppler
cells)

pri_rg map = zeros(dp_pts,rg pts);

pri_rg_mapq = zeros (dp_pts,rg_pts);

pri_rg_map_shift = zeros(dp_pts,rg_pts);

pri_rg_map_shiftg = zeros(dp_pts,rg _pts);

pri_rg_phaseqg = zeros(dp_pts,rg _pts);

% insert waveform into grid;

load -ascii sigparl %load parameters from file sigparil
sigpar = sigparl’;

sigpar([2 41,:) = sigpar([2 41, :)*prf/dp_pts;

[Ixs,lys] = size(sigpar);

%t0 = Ts:Ts:pw;
t0 = 0:Ts:pw-Ts;
num_chirp_samples = length(t0);
if ((num_chirp_samples + 1lxs) > rg_pts)
disp(‘Warning : Chirp is clipped - set grid size larger’);
end

% open files for writing
f1 = fopen('para.txt’,’'w’);

fprintf (£f1, '$d\r\n’ ,num_chirp_samples) ; % number of range cells
fprintf (£f1, '3d\r\n’,dp_pts); % number of doppler cells
fprintf (£f1, ‘%d\r\n’,lys); % target extent

% adjustment to correct multiplication factors for the amplitude (gain) value
for i = 1:1ys
switch sigpar(3,1)

case {1}

sigpar(3,i)=1; % no shift, multiplication by 1, hardware bit "00"
case {2}

sigpar(3,i)=2; % shift by 1, multiplication by 2, hardware bit "01"
case {3}

sigpar(3,i)=4; % shift by 2, multiplication by 4, hardware bit "10"
case {4}

sigpar(3,1i)=8; % shift by 3, multiplication by 8, hardware bit "11"
end
fprintf (£1, '%d\r\n’,sigpar(3,1i)); % gainl, gain2, ..., gainN

end

nbitsph = 3;
nbitsdop = 5;
nbitsamp = §;

b = 2*pi/ (2”nbitsph);

a = 2*pi/(2”nbitsamp) ;

P = 2*pi/(2”nbitsdop);

for idxl = 1l:dp_pts % Repeat for total number of pulses within batch

%$tl = t0;
%tl = t0 + (idx1) *pri;
tl = t0 + (idx1-1)*pri;
for idx = 1:1ys
**** approximation used here, assume phase change due to doppler
within a chirp is constant

g**** gince the doppler is tens of hertz compared to the MHz chirp
bandwidth

%oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*tl;

oldphase = mu*tl.*tl/2 + 2*pi*sigpar(2,idx)*(idx1-1)*pri;

oldphase = mod(oldphase,2*pi);

% quantize the oldphase to 1 of 8 phases
int_oldphase = round(oldphase/b);

oldphaseq = b*int_oldphase; % quantize the phase
Xc = exp(sqrt(-1)*oldphase);
1x = (sigpar(l,idx)): (sigpar(l,idx))+length(xc)-1;

pri_rg map(idxl,lx) = xc+pri_rg_map(idxl,1x);
pri_rg phaseq(idxl, lx) = int_oldphase;

xXcq exp (sqrt (-1) *oldphaseq) ;

xcqg = p*round(xcqg/p); % quantize the phase

pri_rg mapg(idxl, 1x) = xcg+pri_rg_mapqg(idxl, 1x);

% phase focusing

$oscc = cos(2*pi*sigpar(4,idx)*tl);

%oscs = sin(2*pi*sigpar(4,idx)*tl);

$xI = real(xc).*oscc - imag(xc).*oscs;

$xQ = imag(xc).*oscc + real(xc).*oscs;

$dopphase = 2*pi*sigpar(4,idx)*tl;

$newphase = oldphase + dopphase;

%dopphase = 2*pi*sigpar(4,idx)*{(idxl)*pri; % approximation used here
dopphase = 2*pi*sigpar(4,idx)*(idx1-1)*pri; % approximation used here
newphase = oldphase + dopphase*ones (size(oldphase));

xI = cos(newphase);
xQ = sin(newphase);
x1 = sigpar(3,idx)* (xI+sqgrt(-1)*xQ);

pri_rg map_shift(idxl,1x) = pri_rg map_shift(idxl,1x) + x1;

int_dopphaseqg = round(dopphase/p);
dopphaseq = int_dopphaseqg*p;
newphaseq = oldphaseqg + dopphaseq;
xI = cos(newphaseq);

XQ = sin(newphaseq):;
xI = round(xI/a)*a;
xQ round (xQ/a) *a;

x1 = sigpar(3,idx)*(xI+sqrt(-1)*xQ);
pri_rg map_shiftg(idxl,1lx) = pri_rg map_shiftg(idxl,1x) + x1;

% store the dopphase value (ignore intrapulse phase change since it is
small)
fprintf (£1, *‘%d\r\n’, int_dopphaseq) ;
end
end
fclose(£fl);

noise = randn(size(pri_rg map))*c_snr(snr); noise = 0;
pri_rg_map = pri_rg_map + noise;
pri_rg_map_shift = pri_rg map_shift + noise;

% Perform pulse compression

$ (a) for the non-quantized phase case

disp(’Creating reference waveform’);

ph = (mu*tl.*tl/2);

crefc = exp(sqgrt(-1)*ph);

cref = conj (fft(crefc,2*rg_pts-1));

save pc_ref cref

pc_ref_map = fft(pri_rg map.’,2*rg_pts-1).";

pc_ref map_shift = fft(pri_rg map_shift.’,2*rg pts-1).’;

disp(’Performing pulse compression’);
pri_rg_mapl = zeros(size(pri_rg_map));
pri_rg_map2 = zeros(size(pri_rg map));

%--- Compress the original signals
for idx = 1l:dp_pts

"tmp = cref.*pc_ref_map(idx,:);

tmpl = fftshift(ifft(tmp));

pri_rg mapl(idx,:) = tmpl(rg_pts:end);
end

%--- Compress the doppler shifted signals

for idx = l:dp_pts
tmp = cref.*pc_ref_map_shift(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg map2(idx,:) = tmpl(rg_pts:end);
end

% Compute the rg-dop map
disp(‘Plotting ... r-d map’);

dp_rg map = f£ft(pri_rg _mapl);
dp_rg map_shift = fft(pri_rg map2);

[1x,1ly] = size(dp_rg_map);
rax = 1:(length(ly));
dax = 0:(length(lx))-1;

dpy = abs(dp_rg_map);
dpy_shift = abs(dp_rg_map_shift);

if (noplot == 0)
figure(l);

subplot(2,1,1);

h = contour (dpy,Ncontours); grid

title(‘a. Original RdA-Dp Map');

axis([1 62 0 64])

xlabel ('Down Range Cells’); ylabel ('Cross Range Cells’);
subplot(2,1,2);

h = contour (dpy_shift,Ncontours); grid

axis([1 62 0 641])

title(’b. Amplitude and Doppler Modulated RA-Dp Map’):
xlabel ('Down Range Cells’); vlabel (’Cross Range Cells’);

A-10

% Perform pulse compression

% (b) for the quantized phase case

disp(‘Performing pulse compression for quantized phase case’);
pc_ref_mapg = fft(pri_rg mapqg.’,2*rg_pts-1).’;
pc_ref_map_shiftqg = fft(pri_rg map_shiftqg.’,2*rg pts-1).’;
pri_rg_map3 = zeros(size(pri_rg_mapq));

pri_rg _mapé4 = zeros(size(pri_rg mapqg));

%$--- Compress the original signals

for idx = 1:dp_pts
tmp = cref.*pc_ref mapqg(idx,:);
tmpl = fftshift(ifft(tmp));
pri_rg_map3(idx,:) = tmpl(rg pts:end);
end

%$--~- Compress the doppler shifted signals

for idx = 1:dp_pts
" tmp = cref.*pc_ref_map_shiftg(idx,:);
tmpl = fftshift(ifft (tmp));
pri_rg map4(idx,:) = tmpl(rg pts:end);
end .

% Compute the rg-dop map
disp(’Plotting ... r-d map’);

dp_rg_mapqg = fft(pri_rg map3);
dp_rg_map_shiftg = fft(pri_rg map4);

[1x,1ly] = size(dp_rg_mapq);:
rax = 1l:(length(ly));
dax = 0:(length(lx))-1;

dpyq = abs(dp_rg_mapq) ;
dpy_shiftg = abs(dp_rg _map_shiftq);

% ~- Simulation of phase quantizing DRFM

% Now convert amplitude to phase.

% Convert phase to positive numbers between 0-360deg, so do not need to
handle

% negative numbers in Altera.

pri_rg_mapg _angle = mod(pri_rg phaseq,2*pi);

pri_rg_mapqg shift_angle = angle{(pri_rg map_shiftq);

£2 = fopen(’'rawint.txt’,’'w’);

[1x,1ly] = size(pri_rg mapg angle);

deltaDegrees = 2*pi/(2”nbitsdop);

for i = 1:1x
int_raw = round(pri_rg_mapqg angle(i,l:num_chirp_samples-

1) /deltaDegrees); % need to store in Visual basic text file format

fprintf (£2, '%4, ', int_raw) ; ‘
int_raw = round(pri_rg_mapg angle(i,num chirp_samples)/deltaDegrees) ;
fprintf (£2, ‘%d\r\n’, int_raw);

end;

fclose(£2);

g = 2*pi/(2”nbitsph);

pri_rg_mapqg drfm = exp(sqgrt(-1)*(round(pri_rg_mapq angle/q)) *q);

pri_rg_mapg shift_drfm = exp(sqgrt(-
1) * (round(pri_rg_mapg shift_angle/q)) *q);

% Perform pulse compression

% (c) for the quantized phase case with phase DFRM model
disp(’'Performing pulse compression for quantized phase case (simulates

phase DFRM effects)’);

pc_ref_mapg drfm = fft(pri_rg_mapg drfm.’,2*rg_pts-1).’;
pe_ref_mapqg shift_drfm = fft(pri_rg mapqg shift_drfm.’,2*rg_pts-1).’;
pri_rg_map5 = zeros(size(pri_rg_mapg drfm));

pri_rg _mapé = zeros(size(pri_rg mapqg shift_drfm));

%--- Compress the original signals
for idx = 1:dp_pts
tmp = cref.*pc_ref_mapqg drfm(idx, :);
tmpl = f£ftshift(ifft(tmp));
pri_rg map5(idx,:) = tmpl(rg_pts:end);
end

%$--- Compress the doppler shifted signals
for idx = 1l:dp_pts

tmp = cref.*pc_ref mapqg shift_drfm(idx,

tmpl = fftshift(ifft(tmp));

pri_rg mapb(idx,:) = tmpl(rg_pts:end);
end

% Compute the rg-dop map
disp(‘Plotting ... r-d map’);

dp_rg_mapq drfm = fft(pri_rg_map5);
dp_rg_map_shiftg drfm = fft(pri_rg_mapé6);

[1x,1ly] = size(dp_rg_mapqg drfm);
rax = 1l:(length(ly)):

dax = 0:(length(lx));

$dax = 0: (length(1lx))-1;

dpyqg drfm = abs(dp_rg mapg drfm);
dpyq shift_drfm = abs (dp_rg_map_shiftq);
save plot dpyqg dpyq shift_drfm

end

figure(l); print -dtiff simhostl

1)

A-12

simhwchkvl.m

R R R R R R R R R e e f TR Lt e

% simhwchkvl.m

%

% Modified version of simhwchk.m

% Modified by: Stig Ekestorm, Aug-99

%

% simhwchk.m

% Purpose: This program performs a architectural true simulation of the
% Digital Image Synthesizer hardware

% Created by: SY Yeo

SRR R T PR LR R R R R R LR R R R R R TR R R R R R R R R R T R TR
clear
set (0, 'defaultAxesFontSize’,8);

noPlot = 0;
Ncontours = 20;

depthLUT = 32;

widthLUTFile = 2; % in units of number of hex digits
widthLUT = 8; % n bits

ndopbits = 5;

rg_pts = 200;

%*****************************

% Read from data files

%*****************************

% Read from para.dat

fid = fopen(’'para.txt’,’'r’); %opens para.txt to be read

tmp = fscanf(fid,’%d’); %reads in the values

nRangeCell = tmp(l); %$1lst value: 62, represents the number of range cells
nDopplerCell = tmp(2); %2nd value: 64, represents the number of radar pulses
targetExtent = tmp(3); %3rd value: 3, represents the radial length of the
target expressed in number of range cells

gain = tmp(4:4+targetExtent-1); %4th to 6th values: 1,2,4 - the gain wvalue
for each tap '
gainRev = fliplr(gain);

tmpl = tmp (4+targetExtent:end); % 7th to last value: the phase increment
values for each tap

%phi = reshape (tmpl, targetExtent,nDopplerCell+(targetExtent-2));

phi = reshape(tmpl, targetExtent,nDopplerCell); %3x64 matrix with zeros in the
lst column

fclose(£fid);

% Read from rawint.dat
raw = zeros (nDopplerCell,nRangeCell); %create a 64x62 matrix, initialized to
zeros
fid = fopen(’rawint.txt’,’r’); %open rawint.txt to be read
for j = 1l:nDopplerCell
for k = l:nRangeCell-1
raw(j,k) = fscanf(fid, '%d’',1);
comma = fscanf (fid, '%c’,1);
end

raw(j,nRangeCell) = fscanf(fid, '%d’,1);

end

fclose(£fid);

[row,col] = size(raw):;

raw = [raw,zeros({row,targetExtent-1)]; %raw: 64x64 matrix, last 2 columns
with zeros

Sraw = [raw,zeros(row,targetExtent)]; %raw: 64x65 matrix, last 3 columns with
zeros

% Read from the LUT files.
load -ascii cosine.txt % wvariable is cosine
load -ascii sine.txt % variable is sin

%*****************************

% Pulse-Pulse Processing
%*****************************
delayLine = zeros(targetExtent+1l,1);
gainRev = fliplr(gain);

phiRev = zeros(targetExtent,1);

% Intermediate node variables

phaseAdderOut = zeros(targetExtent,l);

lutOut = zeros(targetExtent,1l);

finalAdderOut = zeros (nDopplerCell,nRangeCell + (targetExtent-1),1);
%finalAdderOut = zeros (nDopplerCell,nRangeCell + targetExtent,l);

fl1 = fopen(’checkvil.txt’, ‘w’);
for batchCnt = l:nDopplerCell
disp([’Processing Pulse ‘num2str (batchCnt)]);

for intraPulseCnt = 1:(nRangeCell + (targetExtent-1)) % clock cycle
%for intraPulseCnt = 1:(nRangeCell + targetExtent) % clock cycle

delaylLine(2:targetExtent+l) = delaylLine(l:targetExtent);
delayLine(l) = raw(batchCnt, intraPulseCnt);

% --- This part simulates the intra pulse processing in hardware

$ Phase addition (add doppler offset to DFRM phase)
phaseAdderOut = delayLine(l:targetExtent) + phi(:,batchCnt);

% Phase-amplitude look-up (to obtain complex time signal)
tmp = mod (phaseAdderOut,depthLUT) + 1;

%tmp = phaseAdderOut + 1;)

lutOut = cosine(tmp) + sqgrt(-1)*sine(tmp);

%To correct processing flow (ref. Yeo’s Thesis, p.35)
g$intraPulseCnt = 1:((nRangeCell) + (targetExtent-1))
%correction at start-up ("initialize one tap after another")
if intraPulseCnt<targetExtent,

test=1:1: (targetExtent-1);

idx=test(:,intraPulseCnt);

for idx2=intraPulseCnt: (targetExtent-1),

lutOut ((idx2+1),:)=0;
end :

A-14

end

%correction at the end ("shutting down the taps one tap after another")

if intraPulseCnt>nRangeCell,
for idx2=1:(intraPulseCnt-nRangeCell),
lutOut ((idx2), :)=0;
end
end

% Gain modulation
lutOutl = gainRev.*lutOut;

% Final accumulation to form extended target
finalAdderOut (batchCnt, intraPulseCnt) = sum{lutOutl);

fprintf (£1, ‘%s:%d\xr\n’, ‘clock cycle’,intraPulseCnt) ;
fprintf(£f1l,'DL:%d ‘,delaylLine); fprintf(fl,'\t’);
fprintf (£f1, 'phi:%d ‘,phi(:,batchCnt)); fprintf(fl,’'\t’);
fprintf (£1, ‘modph:%4d ‘, tmp);
fprintf (f1, ‘\r\n’);
fprintf (£f1, ‘rlutOut:%5.2f ’,real(lutout)); fprintf(£fl,’'\t’);
fprintf (£1,’ilutOut:%5.2f ’,imag(lutoOut)); fprintf(£fl,’'\t’);
fprintf(£f1l, '‘\r\n’);
fprintf (£1, ‘rsum:%5.2f ’,real (sum(lutOutl))); fprintf(£fl,’'\t’);
fprintf (£f1,'isum:%5.2f ’,real(sum(lutOutl))); fprintf(£1l,’'\t’);
fprintf (£f1, '\r\n’);
fprintf (£f1, ‘\r\n’);
end % intraPulseCnt
end % batchCnt
fclose (£1l);

%*****************************

% Pulse Compression
%*****************************
%--- Compress the doppler shifted signals
load pc_ref
priRgMapShift = zeros(nDopplerCell,rg_pts);
tic
pcRefMapShift = fft(finalAdderOut.’,2*rg pts-1).';
for idx = 1:nDopplerCell
tmp = cref.*pcRefMapsShift(idx, :);
tmpl = fftshift (ifft(tmp));
priRgMapShift (idx, l:end-targetExtent+l) = tmpl{(rg_pts+targetExtent-
l:end);
end
dpRgMapShiftMOD = abs(fft(priRgMapShift));
%dpRgMapShift = abs(fft(priRgMapShift));
toc

save plotMOD dpRgMapShiftMOD

save fAddOut finalAdderOut

%*****************************

% Display
%*****************************
if (noPlot == 0)

figure(2);

load plot.mat

subplot(2,1,1);

h = contour (dpyq,Ncontours); grid; axis([1 62 0 64])

$h = contour (dpyg _shift_drfm,Ncontours); grid; axis([0 20 0 32])

title(’a. Amplitude and Doppler Modulated RdA-Dp Map (unmodulated / MATLAB)
")
xlabel ('Down Range Cells’); ylabel (‘Cross Range Cells’);
axis([1 62 0 64])

subplot(2,1,2);
h = contour (dpRgMapShiftMOD,Ncontours); grid; axis([1 62 0 64])

$h = contour (dpRgMapShift,Ncontours); grid; axis([1 20 0 32])
title(’b. Amplitude and Doppler Modulated RA-Dp Map (Bit-True, modulated /

MATLAB) ’);
xlabel ('Down Range Cells’); ylabel ('Cross Range Cells’);

axis([1 62 0 64])

end

A-16

plothwvl.m

e R R TR L
plothwvl.m

Modified version of plothwv0O.m

Modified by Stig Ekestorm, Aug -99

This version processes the output from the hardware

Works in concert with mathostv0.m and simhwchk.m

Created by SY Yeo, 11 Aug 1998

B R R R R R R R R R R R R L R R R R R R R R R R R R L R R R R R R LR R LR L L T

o0 P d° 6° o0 of o°

clear
set (0, ‘'defaultAxesFontSize’,7)

0;

noplot

200;

rg_pts

$to load data from hardware output files
load -ascii imagei.txt
load -ascii imageq.txt

fid = fopen(’para.txt’,’r’);
tmp = f£scanf (fid, '%d’);
nRangeCell = tmp(l);
nDopplerCell = tmp(2);
targetExtent = tmp(3);
fclose(fid);

%$for getting the data form hardware in the right format

image = imagei - j*imageq;

image = reshape (image,nRangeCell+targetExtent,nDopplerCell); %for FPGA 3-tap
simulation

%image = reshape(image,nRangeCell+ (targetExtent-1),nDopplexCell); %$for ASIC
simulation

image = image’;

load fAddOut

if (noplot == 0)

FREEEARE R LSRR EELEREEEEEEERESE S

% Pulse Compression
%*****************************

%$~-~- Compress the doppler shifted signals
figure(3);
orient tall

load plot.mat
load plotMOD.mat

Ncontours = 9;

subplot(2,1,1);

%h = contour (dpyq_shift_drfm, Ncontours); grid, axis([1l 62 0 64])
h = contour (dpRgMapShiftMOD, Ncontours); grid; axis([1 62 0 641)

title(’a. Amplitude and Doppler Modulated RA-Dp Map (Bit and Architecture-

True / MATLAB) ‘) ;
xlabel (‘Down Range Cells’); ylabel ('Cross Range Cells’);

%to post-process data from hardware
load pc_ref
priRgMapShift
tic
pcRefMapShift = f£ft(image.’,2*rg pts-1).’;
for idx = 1l:nDopplerCell

tmp = cref.*pcRefMapShift(idx,:);

tmpl = fftshift(ifft(tmp));

zeros (nDopplexrCell.’ ,rg_pts):

priRgMapShift (idx,l:end-targetExtent+1l) = tmpl (rg_pts+targetExtent-
l:end); '
end
dpRgMapShift = abs(fft(priRgMapShift));
toc

subplot(2,1,2);
h = contour (dpRgMapShift,Ncontours) ;
grid, axis([1l 62 0 64])
title(’b. Amplitude and Doppler Modulated Rd-Dp Map (from HARDWARE
output) ') ;
xlabel ('Down Range Cells’); vlabel (‘Cross Range Cells’);
end

figure(3)
print -dtiff hwres

gfigure(5)

figure(4)

subplot(3,1,1);

h = mesh(dpRgMapShiftMOD); grid;

%$h = mesh(dpyqg shift_drfm); grid;

title(’a. Amplitude/Doppler Modulated RA-Dp Map (Bit-True, modulated /
MATLAB) ') :;

xlabel (' Down Range Cells’); yvlabel (‘Cross Range Cells’); grid
subplot(3,1,2);

%$to plot hardware output

h = mesh(dpRgMapShift); grid;

title(’b. Amplitude/Doppler Modulated RA-Dp Map (HARDWARE output)’);
xlabel ('Down Range Cells’); ylabel (‘Cross Range Cells’); grid
subplot(3,1,3);

%to plot difference between Matlab simulation and hardware output
%h = mesh(dpyq shift_drfm/max(max(dpyqg _shift_drfm))-

dpRgMapShift/max (max (dpRgMapShift))); grid;
h = mesh(dpRgMapShiftMOD-dpRgMapShift); grid; %plot the real difference, Stig
Aug-99

%h = mesh(dpyq_shift_drfm-dpRgMapShift); grid; %plot the real difference,
Stig Aug-99

title(’c. Difference’);

xlabel ('Down Range Cells’); ylabel ('Cross Range Cells’); grid

print -dtiff diffplot

%for comparison 5 Oct -99, Stig Ekestorm
$figure(5)
%h = mesh (dpRgMapShiftMOD); grid;

gtitle(’a. Amplitude/Doppler Modulated RA-Dp Map (Bit-True, modulated /

MATLAB) ') ;
%xlabel ('Down Range Cells’); vylabel(’Cross Range Cells’); grid

%for comparison 5 Oct -99, Stig Ekestorm

$figure(6)

%h = mesh(dpyq_shift_drfm); grid;

gtitle(’a. Amplitude/Doppler Modulated Rd-Dp Map (Bit-True, modulated /
MATLAB) ') ;

%xlabel ('Down Range Cells’); ylabel ('Cross Range Cells’); grid

Version 2

runDISv2.m

$%%%%% %L 2LISSLILILITLILILLIILILEBBLIBILIRILY

0@
oP

SLELEBLEL332%%%%%
runDISv2.m

oo
oe

oP 0P

% This script file will help you to run the Digital Image Syntesizer (DIS)

% This is a modified version that is able to handle different target extents
$ (that is, how many taps the user would like to use that will represent the
% radial length of the target, seen from the ISAR)

% The user can also specify some necessary input parameters

% Created by:

% MAJ Stig Ekestorm, Nov -99

Naval Postgraduate School
%%

90 oe
o0
4
oo

% set path
% cd c:\temasek\denise\thesis\final_design\vbfiles

% clear the workspace
clear

% declare global variables, used in outer m-files and functions
global dp_pts

global rg_pts

global hda

% interactive - use of a dialog box to get inputs parameters from user
title='User Specified Parameters - Matlab DIS Simulation’;
prompt={’Number of Doppler cells in the ISAR’,...

'Number of Range gates in the plots’,...

'Hardware Data available for comparison [1 for yesl]’};
default={’64’,7200’,'0"};
response=inputdlg (prompt, title, 1, default);
fields={’dp_pts’, 'rg_pts’,‘'hda’}; % number of Doppler cells, hardware data
available
input=cellZstruct(response,fields,l);
% convert cell structure created by dialog box back to numbers
dp_pts=str2num(input.dp_pts);
rg_pts=str2num(input.rg_pts);
hda=str2num(input.hda);

% run the graphical user interface (GUI) to specify target parameters
guiv2

disp('Enter the values in the Grapical User Interface’)

disp(’'Press any key to continue’)

pause

% pre-process signal parameters, simulate ISAR
mathostv2

% simulate the DIS in Matlab)
% This simulation does "parallel processing" and then "serial summation",

including:
% - correction at start-up ("initializing outputs from the taps, one tap

after another")

% - correction at the end ("shutting down the taps, one tap after another")
simhwchkv2

% plot results for visual comparison
plothwv2

% end of file

guiv2.m
function [dat] = guiv2(action);

R P R e R R R R R R R P L R TR L E e E R e S L R R A R S LR LA R L E LA R LA 1

% Get inputs from screen

% MAJ Stig Ekestorm, Sep -99

odified version of guiv2.m by SY YEO, 30 Jan 98

SRR PR R R PR PR PR PR R PR LR R R R R R R b e A R T R e e L T

global hf

global hl

global h2

global data
global loc
global patchsize
global txtloc
global count
global ph

global dp_pts

if nargin<1,
action=’'start’;
end;

if strcmp(action, ‘start’),
% initialize the figure
set (0, 'DefaultAxesFontSize’,6);

hf = figure(l); clf
set (hf, 'NextPlot’,’add’);

set (hf,
‘NumberTitle’, ‘off’,
'Name’, 'Naval PostGraduate School’, ...
'backingstore’, ‘off’, ...
'Units’, 'normalized’);

$rg_pts = 15;
rg_pts = 62;

%$dp_pts = 64;

data = [1; 1loc = [];

count = 0;

ph = [];

hl = axes(’'Position’,[0 0 1 1], ‘Visible’,’o0ff’);

h2

1
axes ('Position’,[0.1 0.1 0.6 0.81);

set (hf, 'currentaxes’,h2);

xa = l:rg_pts:

va = 0:(dp_pts-1);

xtick = 0:1:rg_pts;

set (gca, 'XTickMode’, ‘'manual’) ;
set (gca, 'XLimMode’, ‘manual’) ;
set(gca, 'XLim’, [1 rg_ptsl]);
set (gca, 'XTick’,xtick);

set (gca, 'XGrid’, 'on’);

set (gca, 'GridLineStyle’, '-');

set(gca, 'YTickMode’, ‘'manual’);
set (gca, 'YLimMode’, ‘manual’) ;
set (gca, 'YLim’, {0 dp_pts-11);
ytick = 0:1:dp_pts;

set (gca, 'YTick’ ,ytick);
set(gca, 'YGrid’, ‘on’);

set (gca, 'GridLineStyle’, '=');
xh = xlabel (‘Range Cell’); set(xh, FontSize’,8); clear xh
vh = ylabel(’Doppler’); set(vh, 'FontSize’,b8); clear vh

ht = title(’Range-Doppler-Amplitude Map Entry Program’);
set (ht, 'FontSize’,10, 'Coloxr’, [0 0 11});

a = uicontrol(’Units’, ‘normalized’,
'BackgroundColoxr’,[.9 .9 .9],
'Position’, [0.72 0.80 0.15 0.043],
rStyle’, 'text’,

‘FontSize’,6, ...
'String’, ‘Range Cell’,
'Tag’,’'aText’);

b = uicontrol(‘Units’, ‘normalized’, ...
'BackgroundColor’,[.9 .9 .9],
'Position’, [0.72 0.75 0.15 0.047],
'Style’, "text’,

'FontSize’,6,...
'String’, 'Doppler Cell’,
‘Tag’, ‘bText’);
¢ = uicontrol('Units’, ‘'normalized’,

‘BackgroundColor’,[.9 .9 .9}, ...
'Position’,[0.72 0.65 0.15 0.04],
'Style’, 'text’,

'FontSize’,6,...

'String’, ‘Amplitude’,

"Tag’, 'cText’);

cll = uicontrol(’Units’, '‘normalized’,
'BackgroundColor’,[.9 .9 .9], ...
'Position’, [0.72 0.60 0.15 0.041,
'Style’, ‘slider’, 'min’, 0, 'max’,4, ...
‘SliderStep’, [0.25 0.5, ...
‘Callback’, ‘guiv2(’ ‘updatel’’)}"');

d = uicontrol (’'Units’, ‘'normalized’,
'BackgroundColor’,[.9 .9 .91,
‘Position’, [0.72 0.50 .15 0.04},

dlli

al

set
bl

set
cl

di

gl

g2

'Style’, 'text’,
‘FontSize’, 6,
'String’ ,'Doppler Shlft)

= uicontrol(’Units’, 'normalized’,
'BackgroundColor’,[.9 .9 .91,
'Position’,[0.72 0.45 0.15 0.04],
'sStyle’, ’slider’, 'Min’,-10, ‘Max’, 10,
’SliderStep’,[0.05 0.1],...
‘Callback’, 'guiv2 (' ‘updatel’’)’);

= ulcontrol(’Units’, ‘normalized’,
'BackgroundColor’,[1 1 1],
‘Position’,[0.9 0.80 0.05 0.04}1,
'Style’, 'text’,

’FontSize’ 6

‘String’, .

'Tag’ ,’alText),

(gcf, 'currentaxes’ ,hl);

= ulcontrol(’Units’, ‘normalized’,
'BackgroundColor’, [1 1 1],
‘Position’,{0.9 0.75 0.05 0.04],
‘Style’, ‘text’,

’FontSize 6

'String’

‘Tag’ ,'a2Text2),

(gcf, 'currentaxes’,hl); .

= uicontrol(‘Units’, 'normalized’,
'BackgroundColor’,[1 1 1],
'Position’,[0.9 0.65 0.05 0.04],
'Style’, ‘text’,

'FontSize’, 6, .
‘Callback’, 'guiv2{’ 'update’ ") ’,
‘String’,’"’);

= uicontrol(’Units’, 'normalized’,
'BackgroundColor’,[1 1 1], ...
'Position’,[0.9 0.50 0.05 0.04],
'Style’, 'text’,

'FontSize’,6, ...
"Callback’, "guiv2 (' 'update’ ") ',
'String’,’’);

= uicontrol(’Units’, 'normalized’,
'BackgroundColor’, 'Yellow’,
'Position’,[0.9 0.10 0.05 0.047],
'Style’, 'pushbutton’,
'FontSize’,8,

'String’, 'SAVE’,
'Callback’, 'guiv2 ('’ 'savequit’’) '} ;

= uicontrol(’'Units’, 'normalized’,
'BackgroundColor’ ,~Yellow’, ...
'Position’,[0.78 0.1 0.1 0.04], ...
'Style’, 'pushbutton’,

'FontSize’,8,...
'String’, 'CLEAR’, .
‘Callback’, 'guiv2(’'’'start’’)");

txtloc = [a al b bl ¢ ¢l ¢11 4 d1 d11];
% Assign action when mouse button is pressed
set (h2, 'ButtonDownFcn’, ‘guiv2 (' ‘down’ ') ') ;

elseif strcmp(action, 'down’),
% Obtain coordinates of mouse click location in axes units

set (hf, 'currentaxes’,h2);
pt=get (h2, 'currentpoint’) ;

x=pt(1l,1); xf = floor(x);
yv=pt(1,2); v = floor(y):
[r,c] = size(data);

set (txtloc(7), 'Value’,0);
set{txtloc(9), 'Value’,0);

tmp = [{x v 1 0];
loc = [loc tmp];
tmp = [xf vy 1 0];

data = [data;tmp];
[r,c] = size(data);
ypos = [yf yf+1 yf+1 v£];
xpos = [xf xf xf+1 xf+17];

count = count + 1;

$disp (count) ;

txt = ['Tag’,num2str(count)];

ptr = patch(xpos,ypos, {1 1 1]1*%0.9);

%disp (ptr);

set (ptr, 'ButtonDownFcn’, [
‘guiv2 (’ ‘update’’)’1);

set (ptr, 'Tag’, txt);

set (ptr, 'UserData’, [xf yv£ 1 0]);

ph = ptr:;

set (txtloc(2), 'String’,xf);

set (txtloc(4), 'String’,vf);

set (txtloc(6), 'String’,1);

set (txtloc(9), 'String’,0);

- elseif strcmp(action, ‘update’),
% Determine the patch that is selected
ph = gcbo;
%$set (ph, 'Selected’, ‘on’);
% Retrieve the values for that patch and display it
% txtloc = [a al b bl ¢ ¢l cl1 4 d1 d411];

% txtloc 2: Range cell

% txtloc 4: Doppler cell

% txtloc 6: Amplitude txtloc 7: Slider bar

% txtloc 9: Doppler offset txtloc 9: Slider bar

ud = get(ph, 'UserData’);
set (txtloc(2), 'String’,ud(1l));
set (txtloc(4), 'String’,ud(2));

set (txtloc(6), 'String’,ud(3));
set (txtloc(9), 'String’,ud(4)); -
set (txtloc(7), 'Value’,ud(3));
set (txtloc (10), ‘Value’,ud(4));

elseif strcmp(action, ‘updatel’),
if (~isempty(ph))

phl = gcbo;

if ((phl == txtloc(7)) | (phl == txtloc(10)))
ud = get (ph, ‘UserData’);
xf = ud(l); vE = ud(2);

ypos = [yf yf+1 yf+1 yfl;
xpos = [xf xf xf+1 x£+1];
set (ph, 'Selected’, ‘off’);
% Update the amplitude/doppler values
if (phl == txtloc(7))
tmpl get (txtloc(7), 'Value');
tmpl round (tmpl)
set (txtloc(6),’'String’,tmpl);
set (txtloc(7), ‘Value’, tmpl);
if (tmpl < 1),
set (txtloc(7), 'Value’,1);
set (txtloc(6),'String’,’1’);
tmpl = 1;
end
col = [1 1 1]*(1-tmpl/10);
set (ph, 'FaceColor’,col) ;
set (ph, 'UserData’, [ud(l) ud(2) tmpl ud(4)]);
end
if (phl == txtloc(10))
tmp2 = round(get(txtloc(10), ‘Value’'));
set(txtloc(9),’'String’, tmp2);
set (txtloc(10), ‘Value’, tmp2);
set (ph, ‘UserData’, [ud(l) ud(2) ud(3) tmp2]);
end
$disp ('HHH') ;
$disp (get (ph, ‘'Tag’))
%$disp(get (ph, 'UserData’))
end
end

elseif strcmp(action, ’'savequit’),
dat = [];
for i = l:count
tt = findobj(’'Tag’,[’'Tag’ num2str(i)]):;
tmp = get(tt, ‘UserData’) '
dat = [dat;tmp];
fprintf(‘count = %4, Tag = %s ’',count,get(tt,’'Tag’));
disp(tmp) ;
end
save -ascii sigparl dat
close gcbf
end

mathostv2.m

R R R R R R R R R L R R L Lt R L L R R E R L e A A E R R R R L L T
% mathostv2.m
% MAJ Stig Ekestorm, Sep -99

% Modified version of mathostvO.m by SY YEO, 9 Jul 98

Generate pri_dp map and range-doppler map

- generates the files for input to hardware

-- file para.txt contains:

line 1: number of range cells

line 2: number of pulse in a batch (equals to dp_pts in this program)
line 3: extent of target in cells (n: integer); number of taps in delay
equals n (pipeline design)

line 4: gainl, gain2, ..., gain n (integer)

line 4+4n+l: phiO0 (pulse 1),

line 4+n+2: phil (pulse 1),

line 4+n+targetExtent: phi-targetExtent (pulse 1),

line 4+n+targetExtent+l: phi0 (pulse 2),

line 4+n+targetExtent+2: phil (pulse 2),

line 4+n+2*targetExtent: phi-targetExtent (pulse 2),

D 60 o0 00 0P o0 o°

—
0
o

line 4+n+dp_pts*targetExtent: phi-targ